

Schedule	
4/14	4/16
TOPIC 12	TOPIC 12
4/21	4/23
REVIEW	REVIEW
4/28	4/30
TEST 2	TOPIC 13
5/5 TOPIC 13 (HAND BACK TESTS	S/7 REVIEW FOR FINAL
5/12	5/14 FINAL 2:30-4:30

|HW || (I)(g)|Find the power series for $f(x) = \frac{1}{x^2}$ centered at $x_0 = 1$ Use $f(x) = f(x_0) + f'(x_0)(x - x_0)$ $+ f''(x_{\circ})(x-x_{\circ})^{2}$ $+\frac{f'''(x_{o})}{z!}(x-x_{o})^{3}+...$ Xo= f(1) = [$f(x) = \frac{1}{x^2} = x^{-2}$ f'(1) = -2 $f'(x) = -2x^{-3} = \frac{-2}{x^3}$

$$f''(x) = 6x^{-4} = \frac{6}{x^{4}} + \frac{f''(1) = 6}{f''(1) = -24x^{-5}} = \frac{-24}{x^{5}} + \frac{f'''(1) = -24}{f'''(1) = -24}$$
Let's stop here.

$$f(x) = 1 - 2(x - 1) + \frac{6}{2!}(x - 1)^{2}$$

$$\frac{1}{7x^{2}} - \frac{24}{3!}(x - 1)^{3} + \cdots$$
Sup

$$\frac{1}{x^{2}} = 1 - 2(x - 1) + 3(x - 1)^{2} - 4(x - 1)^{3} + \cdots$$
But we do not Know the
rudivs of convergence.
Let's see how we could
have found that.

Last time we saw that

$$\frac{1}{x} = 1 - (x-1) + (x-1)^{2} - (x-1)^{3} + \dots$$
converges when $0 < x < 2$

$$\frac{1}{x^{2}} = 1 - (x-1) + (x-1)^{2} - (x-1)^{3} + \dots + (x-1)^{2} + \dots + (x$$

Will have same radius of convergence r=1 by theorem diverge converge diverge from last Week. HX CHI HARACCONT

Topic 12 - Power series
solutions to DDEs
Def: We say that a function

$$f(x)$$
 is analytic at xo if
it has a power series
 $f(x) = \sum_{n=0}^{\infty} a_n(x-x_0)^n$
centered at xo with
possitive radius of
convergence $r > 0$.
 $\Gamma = \infty$ is allowed.]
diverges converges diverges
 $HHHH HHHHHHHH$

 $E_X: X_0=0$ $Sin(x) = x - \frac{1}{3!}x^3 + \frac{1}{5!}x^5 - \frac{1}{7!}x^7 + \dots$ $\Gamma = \infty$ has radius uf convergence Su, sin(x) is analytic at $X_0 = 0$

 $E_X: X_o = |$ $\frac{1}{x} = \left[-(x-1) + (x-1)^2 - (x-1)^3 + \dots \right]$ has radius of convergence r=1. Thus, I is analytic at xo=1.

 $E_X: X_0 = Z$ $X^{2} = 4 + 4(x-2) + (x-2)^{2}$] last week

has radius of convergence
$$\Gamma = \infty$$

Thus, χ^2 is analytic at $\chi_0 = 2$

 E_{X} : $\chi^2 - 5\chi + 2$ is analytic for all X. It's a polynomial.

Main Theorem
Consider either of the
initial value problems:

$$y' + a_o(x)y = b(x)$$

 $y(x_o) = y_o$
OR
 $y'' + a_i(x)y' + a_o(x)y = b(x)$
 $y'' + a_i(x)y' + a_o(x)y = b(x)$
 $y'(x_o) = y'_o, y(x_o) = y_o$
In either case, if the $a_i(x)$
and $b(x)$ are analytic at x_o
then there exists a unique
(1) the form

Solution $\Re(x) = \sum_{n=0}^{\infty} a_n(x-x_n)^n$ centered at X_0 .

turthermore, the radius of convergence r>0 for the power series of the solution y is at least the smallest radius of convergence from amongst the power series of the ai(x) and b(x).

Then the solution will have radius of convergence at least r = 2.