

Ex: Consider

$$y' - 2 \times y = 0$$

$$y(0) = 1$$

$$(x_0 = 0 \text{ for power series})$$

$$y' - 2 \times y = 0$$

$$(x_0 = 0 \text{ for power series centered})$$

$$y' - 2 \times y = 0$$

$$y_0(x) = 0$$

$$Power series centered$$

$$a_1(x) = -2x = 0 - 2x + 0x^2 + 0x^3 + 0x^3$$

$$a_1(x) = -2x = 0 + 0x + 0x^2 + 0x^3 + 0x^3$$

The coefficients $a_1(x) = -2x$ and $a_0(x) = 0$ are analytic at $x_0 = 0$ because they have a power series at $x_0 = 0$ and they both have

radius of convergence
$$r = \infty$$
.
Thus, by the theorem there is
a power series solution
 $y(x) = y(0) + y'(0) + \frac{y''(0)}{2!} + \frac{y''(0)}{3!} + \frac{y''(0)}{3!}$

with radius of convergence
$$r = \infty$$

To fill in this power series
We need $y^{(n)}(0)$.

We use

$$y' - 2xy = 0$$
 $(y' = 2xy)$
 $y(o) = 1$
We have $y(o) = 1$

Also,
$$y'(o) = 2(o)[y(o)]$$

 $= 2(o)(1) = 0$
So, $y'(o) = 0$
To find $y''(o)$ differentiate $y' = 2xy$
to get $y'' = 2y + 2xy'$
So, $y''(o) = 2[y(o)] + 2(o)[y(o)]$
 $= 2(1) + 2(o)[y(o)]$
 $= 2$
Thus, $y''(o) = 2$
Now differentiate $y'' = 2y + 2xy'$
to get $y''' = 2y' + 2y' + 2xy''$
Thus, $y'''(o) = 2[y'(o)] + 2[y'(o)]$

$$+ 2(0) [y''(0)] = 2[0] + 2[0] + 2[0](2) = 0$$

So, $y'''(0) = 0$
Differentiate $y''' = 4y' + 2xy''$
to get $y'''' = 4y'' + 2y'' + 2xy'''$
We get
 $y''''(0) = 4[y''(0)] + 2[y''(0)] + 20] = 4[2] + 2[2] + 0$
 $= 12$
Thus, $y''''(0) = 12$

So,

$$y(x) = y(0) + y'(0)x + \frac{y''(0)}{z!}x^{2}$$

 $+ \frac{y'''(0)}{3!}x^{3} + \frac{y'''(0)}{4!}x^{4} + \cdots$
 $y(x) = 1 + 0x + \frac{2}{z!}x^{2} + \frac{0}{3!}x^{3}$
 $+ \frac{12}{4!}x^{4} + \cdots$
 $y(x) = 1 + x^{2} + \frac{1}{2}x^{4} + \cdots$
radius of convergence $r = \infty$
Side note
If you use previous methods you'd get
 $y(x) = e^{x^{2}} = 1 + x^{2} + \frac{1}{2}x^{4} + \frac{1}{6}x^{6} + \cdots$
 $e^{x} = 1 + x^{2} + \frac{1}{2}x^{2} + \frac{1}{3!}x^{3} + \cdots$

Ex: Consider $y'' + x^2 y' - (x - 1) y = ln(x)$ y'(1) = 0, y(1) = 0 $(x_0 = 1)$

Coefficients: $x^{2} = [+2(x-i)+(x-i)^{2}+0(x-i)^{3}+...]r = M$ -(x-i) = 0-1.(x-i)+0.(x-i)^{2}+... $\ln(x) = -(x-1) + \frac{1}{2}(x-1)^{2} + \dots + r = 1$ Theorem says there will be a power series solution $y(x) = y(1) + y'(1)(x-1) + \frac{y''(1)}{z!}(x-1)^{2}$ + $\frac{y''(1)}{z_1}(x-1)^3 + \cdots$

and it will have radius
of convergence at least
$$r=1$$
.
Now let's find the first few
terms of the power series
solution.
 $y'' + x^2y' - (x-1)y = \ln(x)$
 $y'(1) = 0$
 $y'(1) = 0$
 $y'(1) = 0$
 $y'(1) = 0$
 $y''(1) = 0$
 $y'' = -x^2y' + (x-1)y + \ln(x)$
 $y''(1) = -(1)^2 [y'(1)] + (1-1) [y(1)] + \ln(1)$
 $= -1 \cdot [0] + (0)(0) + 0 = 0$

$$y''(1) = 0$$

$$y'''(1) = 0$$

$$y''' = -2 \times y' - x^{2}y'' + 1 \cdot y + (x - 1)y' + \frac{1}{x}$$

$$y'''(1) = -2(1)[y'(1)] - (1)^{2}[y''(1)]$$

$$+ y(1) + (1 - 1)[y'(1)] + \frac{1}{1}$$

$$= -2[0] - (1)[0]$$

$$+ [0] + 0 + \frac{1}{1}$$

$$= 1$$

$$y'''(1) = 1$$
If you did this again

You'd yet y'''(1) = -3

Thus,

$$y(x) = 0 + 0(x-1) + \frac{0}{z!}(x-1)^{2} + \frac{1}{3!}(x-1)^{3} + \frac{-3}{4!}(x-1)^{4} + \cdots$$

$$y(x) = \frac{1}{6}(x-1)^{3} - \frac{1}{8}(x-1)^{4} + \cdots$$
Will radius uf (unvergence
at least $r = 1$