Math 446 - Homework # 3

- 1. Prove the following:
 - (a) Given $a, b \in \mathbb{Z}$ with $b \neq 0$, there exist $x, y \in \mathbb{Z}$ with gcd(x, y) = 1and $\frac{a}{b} = \frac{x}{y}$.

Solution: Let $d = \gcd(a, b)$. Let x = a/d and y = b/d. Then from class, we know that $\gcd(x, y) = 1$. And we also have that a/b = (a/d)/(b/d) = x/y.

- (b) If p is a prime and a is a positive integer and p|aⁿ, then pⁿ|aⁿ.
 Solution: Suppose that p is a prime and p divides aⁿ = a · a · · · a. Recall that when a prime divides a product of integers then it must divide at least one of the integers contained in the product. Hence p|a. Therefore, pk = a for some integer k. Hence, aⁿ = (pk)ⁿ = pⁿkⁿ. Therefore pⁿ|aⁿ.
- (c) $\sqrt[5]{5}$ is irrational.

Solution: Suppose that $\sqrt[5]{5}$ is rational. Then $\sqrt[5]{5} = a/b$ where $a, b \in \mathbb{Z}$. We may always cancel common divisors in a fraction, hence we may assume that gcd(a, b) = 1.

Taking the fifth power of both sides of $\sqrt[5]{5} = a/b$ gives $5 = a^5/b^5$. Hence $a^5 = 5b^5$. Therefore 5 divides the product $a^5 = a \cdot a \cdot a \cdot a \cdot a$. Recall that when a prime divides a product of integers then it must divide at least one of the integers contained in the product. Since 5 is prime we must have that 5 divides a. Therefore a = 5k where k is an integer. Substituting this expression into $a^5 = 5b^5$ yields $5^5k^5 = 5b^5$. Hence $5(5^3k^5) = b^5$. Therefore 5 divides b^5 . Since 5 is prime we must have that 5|b. But then 5 would be a common divisor of a and b and hence $gcd(a, b) \ge 5$. This contradicts our assumption that gcd(a, b) = 1.

Therefore $\sqrt[5]{5}$ is irrational.

(d) If p is a prime, then \sqrt{p} is irrational.

Solution: Suppose that \sqrt{p} is rational. Then $\sqrt{p} = a/b$ where $a, b \in \mathbb{Z}$. We may always cancel common divisors in a fraction, hence we may assume that gcd(a, b) = 1.

Squaring both sides of $\sqrt{p} = a/b$ and then multiplying through by b^2 gives us that $pb^2 = a^2$. Hence $p|a^2$. Recall that when a prime

divides a product of integers then it must divide at least one of the integers in the product. Since p is a prime, p must divide a. Therefore, a = pk for some integer k. Substituting this back into $pb^2 = a^2$ gives us that $pb^2 = p^2k^2$. Dividing by p gives us $b^2 = pk^2$. Thus $p|b^2$. Again, since p is a prime, we must have that p|b. From the above arguments we see that p|a and p|b. Hence $gcd(a, b) \geq dcd(a, b)$ p. However, we also have that gcd(a, b) = 1. This gives us a contradiction.

(a) Suppose that a, b, c are integers with $a \neq 0$ and $b \neq 0$. If a|c, b|c, 2. and gcd(a, b) = 1, then ab|c.

> **Solution 1:** Since a|c and b|c we have that c = at and c = brwhere $r, t \in \mathbb{Z}$. Therefore at = br. Thus a|br. Since gcd(a, b) = 1and a|br we have that a|r. Thus r = ak where $k \in \mathbb{Z}$. Thus, c = br = bak = (ab)k. Hence ab|c.

> **Solution 2:** Since a|c and b|c we have that c = at and c = brwhere $r, t \in \mathbb{Z}$. Since gcd(a, b) = 1, there exist integers x and y with ax + by = 1. Multiplying this by c we get that acx + bcy = c. Now substitute c = br into the first term and c = at into the second term to get that c = acx + bcy = abrx + baty = (ab)(rx + ty). Therefore ab|c.

(b) Prove that $\sqrt{6}$ is irrational.

Solution 1: Suppose that $\sqrt{6}$ was rational. We show that this leads to a contradiction. We may write $\sqrt{6} = x/y$ where x and y are integers with $y \neq 0$ and gcd(x, y) = 1. Squaring both sides of the equation we get $6 = x^2/y^2$ and then $6y^2 = x^2$. Thus $2(3y^2) = x^2$. So $2|x^2$. Since 2 is prime and $2|x \cdot x$ we must have that 2|x. Thus x = 2k where k is an integer. Plugging this back into $6y^2 = x^2$ we get that $6y^2 = (2k)^2 = 4k^2$. Dividing by 2 gives $3y^2 = 2k^2$. Thus $2|3y^2$. Since 2 is prime that means that 2|3 or $2|y^2$. Since 2 does not divide 3 we must have that $2|y^2$. Then again since 2 is prime we must have that 2|y. Therefore we have found that 2|x and 2|y. This contradicts the fact that gcd(x,y) = 1. Therefore $\sqrt{6}$ must be irrational.

leads to a contradiction. We may write $\sqrt{6} = x/y$ where x and y are integers with $y \neq 0$ and gcd(x, y) = 1. Squaring this equation

Solution 2: Suppose that $\sqrt{6}$ was rational. We show that this

and cross-multiplying we get that $6y^2 = x^2$ or $2 \cdot 3 \cdot y^2 = x^2$. Therefore, 2 divides $x^2 = x \cdot x$. Since 2 is prime we must have that 2 divides x. Similarly, 3 divides $x^2 = x \cdot x$. And since 3 is prime we must have that 3 divides x. Since 2|x and 3|x and gcd(2,3) = 1, by the first part of this problem, we have that $6 = 2 \cdot 3$ must divide x. So x = 6u where u is a non-zero integer. Subbing this into $6y^2 = x^2$ gives us that $6y^2 = 6^2u^2$. Thus $y^2 = 6u^2$. Following the same reasoning as above, this forces that 6 must divide y. Therefore, 6 is a common divisor of x and y which contradicts the fact that gcd(x, y) = 1.

3. Prove that $\log_{10}(2)$ is an irrational number.

Solution: Suppose that $\log_{10}(2)$ was rational. Then $\log_{10}(2) = a/b$ where a and b are positive integers (we may assume they are positive since $\log_{10}(2)$ is positive). In particular, $b \neq 0$. We have that $10^{a/b} = 2$ by the definition of the logarithm. Hence $10^a = 2^b$. Therefore $2^a 5^a = 2^b$. Since prime factorizations are unique (by the fundamental theorem of arithmetic) we must have that a = 0 since there are no factors of 5 on the right-hand side of $2^a 5^a = 2^b$. Hence $2^0 5^0 = 2^b$. This gives $2^b = 1$. But this implies that b = 0 which is not true. Hence $\log_{10}(2)$ is irrational.

4. (a) Let a and b be positive integers. Prove that gcd(a,b) > 1 if and only if there is a prime p satisfying p|a and p|b.

Solution:

Suppose that $d = \gcd(a, b) > 1$. Since d is positive integer with $d \ge 2$, by the fundamental theorem of arithmetic, there is at least one prime p with p|d. Since p|d and d|a we must have that p|a. Since p|d and d|b we must have that p|b. Hence p|a and p|b.

Conversely suppose that there is a prime p with p|a and p|b. Then $gcd(a,b) \ge p > 1$.

(b) Let a, b, and n be positive integers. Prove that if gcd(a,b) > 1 if and only if $gcd(a^n, b^n) > 1$.

Solution: Suppose that d = gcd(a, b) > 1. So a = dk and b = dm where k and m are integers. Thus $a^n = d^n k^n$ and $b^n = d^n m^n$. So $d|a^n$ and $d|b^n$. Hence $\text{gcd}(a^n, b^n) \ge d > 1$.

Conversely, suppose that $gcd(a^n, b^n) > 1$. Then by exercise (4a), there exists a prime q with $q|a^n$ and $q|b^n$. Since q divides the product $a^n = a \cdot a \cdots a$ and q is prime, we must have that q|a. Since q divides the product $b^n = b \cdot b \cdots b$ and q is prime, we must have that q|b. Hence q|a and q|b. Thus $gcd(a, b) \ge q > 1$.

5. Suppose that x and y are positive integers where 4|xy| but $4 \nmid x$. Prove that 2|y.

Solution: Since 4|xy| we have that 4s = xy for some integer s. Hence 2(2s) = xy. Thus 2|xy|. Since 2 is prime we have that either 2|x| or 2|y|. We break this into cases.

<u>case 1</u>: If 2|y then we are done.

<u>case 2</u>: Suppose that 2|x. Then x = 2k where k is some integer. Since $4 \nmid x$ we must have that k is odd. Hence $2 \nmid k$. Substituting x = 2k into 4s = xy gives 4s = 2ky. Hence 2s = ky. Therefore 2|ky. Since 2 is prime we must have either 2|k or 2|y. But $2 \nmid k$. Therefore, 2|y.

6. Let a and b be positive integers. Suppose that 5 occurs in the prime factorization of a exactly four times and 5 occurs in the prime factorization of b exactly two times. How many times does 5 occur in the prime factorization of a + b?

Solution: By assumption $a = 5^4 s$ and $b = 5^2 t$ where s and t are positive integers and $5 \nmid s$ and $5 \nmid t$. Note that $a + b = 5^2(25s + t)$. We want to show that 5 does not divide 25s + t. If 5 did divide 25s + t then 5k = 25s + t for some integer k. This would imply that 5(k - 5s) = t, which gives that 5 divides t. But we know that is not true.

Therefore $a + b = 5^2(25s + t)$ where 5 does not divide 25s + t. Hence 5 occurs twice in the prime factorization of a + b.

7. We say that an integer $n \ge 2$ is a **perfect square** if $n = m^2$ for some integer $m \ge 2$. Prove that n is a perfect square if and only if the prime factorization of $n = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$ has even exponents (that is, all the k_i are even).

Solution: Suppose that *n* is a perfect square. Therefore $n = m^2$ where *m* is a positive integer. By the fundamental theorem of arithmetic $m = q_1^{e_1} q_2^{e_2} \cdots q_r^{e_r}$ where q_i are primes and e_j are positive integers. We

see that

$$n = m^{2} = (q_{1}^{e_{1}}q_{2}^{e_{2}}\cdots q_{r}^{e_{r}})^{2} = q_{1}^{2e_{1}}q_{2}^{2e_{2}}\cdots q_{r}^{2e_{r}}$$

Therefore every prime in the prime factorization of n is raised to an even exponent.

Conversely suppose that every prime in the prime factorization of n is raised to an even exponent. Then $n = p_1^{2k_1} p_2^{2k_2} \cdots p_r^{2k_r}$ where p_i are primes and k_j are positive integers. Let $m = p_1^{k_1} p_2^{k_2} \cdots p_r^{k_r}$. Then m is an integer and $n = m^2$. Hence n is a perfect square.

- A positive integer n ≥ 2 is called squarefree if it is not divisible by any perfect square. For example, 12 is not squarefree because 4 = 2² is a perfect square and 4|12. However, 10 is squarefree. (Recall the definition of perfect square from problem 7.
 - (a) Prove that a positive integer $n \ge 2$ is squarefree if and only if n can be written as the product of distinct primes.

Solution: Suppose that *n* is squarefree. Let $n = p_1^{e_1} p_2^{e_2} \cdots p_s^{e_s}$ be the prime factorization of *n* where the p_i are distinct. Here we have that the e_i are positive integers. Suppose that $e_1 \ge 2$. Then $n = p_1^2(p_1^{e_1-2}p_2^{e_2}\cdots p_s^{e_s})$. This would imply that *n* was divisible by the perfect square p_1^2 . This can't happen since *n* is squarefree. Hence $e_1 = 1$. A similar argument shows that $e_i = 1$ for all *i*. Thus $n = p_1 p_2 \cdots p_s$ is the product of distinct primes.

Conversely suppose that n is the product of distinct primes. By way of contradiction, suppose that n was divisible by a perfect square. Then $n = m^2 k$ where $m \ge 2$ and $k \ge 1$ are integers. Let $m = q_1^{f_1} q_2^{f_2} \cdots q_t^{f_t}$ be the prime factorization of m where the q_i are primes and the f_i are positive integers. Then

$$n = m^2 k = q_1^{2f_1} q_2^{2f_2} \cdots q_t^{2f_t} k.$$

This contradicts the fact that n is the product of distinct primes since, for example, q_1 appears more than once in the factorization for n. Therefore n is not divisible by any perfect squares.

(b) Express the number $32,955,000 = 2^3 \cdot 3 \cdot 5^4 \cdot 13^3$ as the product of a squarefree number and a perfect square.

Solution:

$$32,955,000 = 2^3 \cdot 3 \cdot 5^4 \cdot 13^3$$

= $2^2 \cdot 5^4 \cdot 13^2 \cdot 2 \cdot 3 \cdot 13$
= $(2 \cdot 5^2 \cdot 13)^2 \cdot (2 \cdot 3 \cdot 13)$
= $650^2 \cdot 78.$

Hence 32, 955, 000 is the product of the perfect square 650^2 and the squarefree number $78 = 2 \cdot 3 \cdot 13$.

(c) Let $n \ge 2$ be a positive integer. Then either n is squarefree, or n is a perfect square, or n is the product of a squarefree number and a perfect square.

Solution: Let $n \ge 2$ be a positive integer. We factor n into primes using the fundamental theorem of arithmetic and break the proof into cases.

case 1: Suppose that n's prime factorization contains primes to even powers and primes to odd powers. Then

$$n = p_1^{2e_1} \cdot p_2^{2e_2} \cdots p_a^{2e_a} q_1^{2f_1+1} q_2^{2f_2+1} \cdots q_b^{2f_b+1}$$

where the p_i are the primes in the factorization of n that are raised to an even power and the q_i are the primes in the factorization of n that are raised to an odd power. We then have that

$$n = \left(p_1^{e_1} \cdot p_2^{e_2} \cdots p_a^{e_a} q_1^{f_1} q_2^{f_2} \cdots q_b^{f_b}\right)^2 q_1 \cdot q_2 \cdots q_b$$

If all the e_i and f_i are zero then n is a squarefree number. Otherwise, n is the product of a perfect square and a squarefree number. case 2: Suppose that n's prime factorization only contains primes to odd powers. Then

$$n = q_1^{2f_1 + 1} q_2^{2f_2 + 1} \cdots q_b^{2f_b + 1}$$

where the q_i are primes. We then have that

$$n = \left(q_1^{f_1}q_2^{f_2}\cdots q_b^{f_b}\right)^2 q_1 \cdot q_2 \cdots q_b.$$

If not all the f_i are zero then n is the product of the perfect square and the squarefree number. If all the f_i are zero then

$$n = q_1 \cdot q_2 \cdots q_b$$

and so n is a squarefree integer.

case 3: Suppose that n's prime factorization only contains primes to even powers. Then there are primes p_i where

$$n = p_1^{2e_1} \cdot p_2^{2e_2} \cdots p_a^{2e_a} = (p_1^{e_1} \cdot p_2^{e_2} \cdots p_a^{e_a})^2.$$

Here n is a perfect square.

9. Suppose that $x, y, z \in \mathbb{Z}$ such that x > 0, y > 0, z > 0, gcd(x, y, z) = 1, and $x^2 + y^2 = z^2$. Prove that gcd(x, z) = 1.

Solution: Suppose that $x, y, z \in \mathbb{Z}$ such that x > 0, y > 0, z > 0, gcd(x, y, z) = 1, and $x^2 + y^2 = z^2$. We now show that gcd(x, z) = 1. We do this by showing that the negation of this cannot happen.

Suppose that gcd(x, z) > 1. Then, by exercise 4a, there exists a prime p such that p|x and p|z. Then x = pk and z = pm for some integers k and m. Then $(pk)^2 + y^2 = (pm)^2$. Hence $p[pm^2 - pk^2] = y^2$. Thus $p|y^2$. Recall that if a prime divides a product of two integers then the prime must divide one of the integers. Therefore p|y. But then p|x, p|y, and p|z, which implies that $gcd(x, y, z) \ge p$. This contradicts the fact that gcd(x, y, z) = 1. Therefore, cannot have that gcd(x, z) > 1.