Math 4570 11/30/22

Summary from last time

$$T: P_{2}(IR) \rightarrow P_{2}(IR) \quad T(f) = f'$$

$$f_{\tau}(\lambda) = -\lambda^{3} \quad A = 0 \text{ is only eigenvalue}$$

$$E_{0}(T) = \text{span} \left(\{21\}\} \right)$$

$$P = \begin{bmatrix} 1 \end{bmatrix} \text{ is an ordered basis for } \underbrace{P_{0}(T)}_{\text{multiplicity}} \\ \underbrace{E_{1}(T)}_{\text{multiplicity}} \\ \underbrace{E_{1}(T)}_{\text{multiplicity}} \\ \underbrace{E_{2}(T)}_{\text{multiplicity}} \\ \underbrace{$$

Lemma: Let
$$T: V \rightarrow V$$
 be a linear
transformation where V is a vector space
over a field F. Let V_1, V_2, \dots, V_r
be eigenvectors of T with eigenvalues
 $\lambda_1, \lambda_2, \dots, \lambda_r$ where $\lambda_i \neq \lambda_j$ if $i \neq j$.
Then V_1, V_2, \dots, V_r are linearly independent.
This is saying that eigenvectors from
different eigenspaces are linearly independent
proof by induction: Let's induce this!
We induct on r.
Base case: Suppose $r=1$.
So we have one eigenvector V, with eigenvalue λ_1
Since V, is an eigenvector, we know $V_1 \neq \vec{O}$.
By HW 2 $\#6$, $\tilde{Z}V_1^3$ is a linearly independent

Induction hypothesis Suppose any k eigenvectors
of T with distinct eigenvalues are linearly independent.
Now prove for kt1: Suppose
$$V_1, V_2, ..., V_k, V_{kH}$$

are eigenvectors with corresponding eigenvalues
 $\lambda_1, \lambda_2, ..., \lambda_k, \lambda_{k+1}$ where $\lambda_k \neq \lambda_j$ if $i \neq j$.
Consider the equation
 $C_1V_1 + C_2V_2 + ... + C_kV_k + C_{kH}, V_{kH} = \vec{O}$ (*)
where $C_1, C_2, ..., C_{kH} \in F$.
We must show $C_1 = 0, C_2 = 0, ..., C_{kH} = 0$ is the
only solution to (*1.
Apply T to (*) and use $T(V_k) = \lambda_k V_k$
and $T(\vec{o}) = \vec{O}$ to get that
 $C_1\lambda_1V_1 + C_2\lambda_2V_2 + ... + C_k\lambda_kV_k + C_{kH}, \lambda_{kH}, V_{kH} = \vec{O}$ (*)
Multiplying (*) by λ_{kH} gives
 $C_1\lambda_{h+1}, V_1 + C_2\lambda_{kH}, V_2 + ... + C_k\lambda_{kH}, V_k + C_{kH}, \lambda_{kH}, V_{kH} = \vec{O}$

$$(**) - (***) gives$$

$$(**) - (***) gives$$

$$(**) - (***) gives$$

$$(***) - (***) gives$$

$$(***) - (***) + c_2(\lambda_2 - \lambda_{k+1})V_2 + \dots + c_k(\lambda_k - \lambda_{k+1})V_k = \vec{O}$$
By the induction hypothesis $V_1 \setminus V_2, \dots, V_k$ are linearly independent, and therefore thus hence we have
$$c_1(\lambda_1 - \lambda_{k+1}) = 0$$

$$c_2(\lambda_2 - \lambda_{k+1}) = 0$$
Since $\lambda_1 - \lambda_{k+1} = 0$, $\lambda_2 - \lambda_{k+1} = 0$, $M_k - \lambda_{k+1} \neq 0$.
We must have $c_1 = 0, c_2 = 0, \dots, c_k = 0$.
Plug this back into (*) to get that
$$c_{k+1} V_{k+1} = \vec{O}$$
Since V_{k+1} is an eigenvector, $V_{k+1} \neq \vec{O}$.
Thus, $C_{k+1} = \vec{O}$
So, the only solution to (*) is $c_1 = c_2 = \dots = c_{k+1} = 0$.
So, the only solution to (*) are lin, ind. By induction were done \vec{D}

Theorem: Let V be a finite-dimensional
vector space over a field F. Let
$$T: V \rightarrow V$$

be a linear transformation.
Let $n = \dim(V)$.
Let $\lambda_{1j} \lambda_{2j} \dots j \lambda_r$ be the distinct eigenvalues of T.
Let $n_{1j} n_{2j} \dots j \lambda_r$ be the geometric multiplicities
of the eigenvalues, that is $n_i = \dim(E_{\lambda_i}(T))$.
For each λ_j let
 $\beta_i = \begin{bmatrix} V_{\lambda_{j1}} \\ V_{\lambda_{j2}} \\ V_{\lambda_{$

Moreover,
$$\beta$$
 is a basis for V
iff $n_1 + n_2 + \cdots + n_r = n$
iff T is diagonalizable.