Muth 4680 11/30/22

Theorem (Cauchy's Inequality) Let f be analytic on a region A and let & be a circle with radius R>0 and center Z.EA, so that & and the interior of & lie in A. Suppose there exists M>0 where $|f(z)| \leq M$ for all Z on V. Then, $\left| f^{(k)}(z_0) \right| \leq \frac{k!}{R^k} \cdot M$ for k=0,1,2,3,... Proof: Orient & counter-clockwise. Then by the Cauchy-Integral formula $f^{(k)}(z_{0}) = \frac{k!}{2\pi i} \int_{X} \frac{f(z)}{(z-z_{0})^{k+1}} dz$

If Z is on
$$\mathcal{V}$$
, then

$$\left|\frac{f(z)}{(z-2_0)^{k+1}}\right| = \frac{|f(z)|}{|z-2_0|^{k+1}} = \frac{|f(z)|}{R^{k+1}} \leq \frac{M}{R^{k+1}}$$

$$z \text{ is on } \mathcal{V}$$

$$|z-2_0|=R$$

$$\int O_{n} \mathcal{V}$$

$$\begin{aligned} \left| f_{(z_0)}^{(k)} \right| &= \left| \frac{k!}{2\pi i} \int_{X} \frac{f(z)}{(z-z_0)^{k+1}} dz \right| \\ &= \frac{k!}{2\pi} \left| \int_{X} \frac{f(z)}{(z-z_0)^{k+1}} dz \right| \\ \left| i| &= 1 \end{aligned}$$

$$\leq \frac{k!}{2\pi} \cdot \frac{M}{R^{k+1}} \cdot \frac{M}{R^{k+1}} \cdot \frac{Arclergth(X)}{2\pi R} \\ &= \frac{k!}{R^{k}} \cdot M \end{aligned}$$

Liouville's Theorem Let $f: \square \rightarrow \square$ be an entire function that is bounded on C. This means that f(z) exists for all ZEC, and there exists M70 where $|f(z)| \le M$ for all $z \in C$ Then f is a constant function. So, the only bounded entire functions are the construct Functions! This is different from IR. For example, f: IR-> IR with f(x)=sin(x) Then f'(x) exists for all $x \in |\hat{R}|$ and $|f(x)| \leq |$ for all XER, but fis not constant.

proof: Let
$$f'(z)$$
 exist for all $z \in C$.
Let M70 where $|f(z)| \leq M$ for all $z \in C$.
We will show $f'=0$ everywhere.
Let $z_0 \in C$.
Let χ be a circle of
radius R70 centered
at z_0 .
By Cauchy's inequality,
 $|f'(z_0)| \leq \frac{1!}{R^1} \cdot M = \frac{M}{R}$ (K)
 $|F'(z_0)| \leq \frac{1!}{R^1} \cdot M = \frac{M}{R}$ (K)
(*) above is true for any R70. Let $R \rightarrow \infty$,
then $\frac{M}{R} \rightarrow O$.
Thus, $|f'(z_0)| = O$.
So, $f'(z_0) = 0$.
Since $f'(z_0) = 0$.
S

Fundamental theorem of Algebra
Let
$$P(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

where $a_0, a_1, \dots, a_n \in \mathbb{C}$, $n \ge 1$, and $a_n \ne 0$.
Then, $P(z)$ has at least one zero in the
Complex plane. That is, there exists
 $Z_0 \in \mathbb{C}$ where $P(z_0) = 0$.

proof. We prove this by contradiction.
Suppose
$$P(z) \neq 0$$
 for all $z \in \mathbb{C}$.
Let $f(z) = \frac{1}{P(z)} = \frac{1}{a \cdot t a_1 z + \dots + a_n z^n}$.
Since $P(z) \neq 0$ for all $z \in \mathbb{C}$, we know f is
an entire function.
We will now show that f is bounded on \mathbb{C} .
Let $w = \frac{a_0}{z^n} + \frac{a_1}{z^{n-1}} + \frac{a_2}{z^{n-2}} + \dots + \frac{a_{n-1}}{Z}$.
Then, $P(z) = (a_n + w) z^n$.

Note that if
$$|z| \ge R$$
 then
 $|w| = \left|\frac{a_{o}}{Z^{n}} + \frac{a_{r}}{Z^{n-1}} + \frac{a_{z}}{Z^{n-2}} + \dots + \frac{a_{n-1}}{Z}\right|$
 $\le \left|\frac{a_{o}}{Z^{n}}\right| + \left|\frac{a_{i}}{Z^{n-1}}\right| + \left|\frac{a_{z}}{Z^{n-2}}\right| + \dots + \left|\frac{a_{n-1}}{Z}\right|$
 $|z| \ge R$
 $\le \left|\frac{a_{o}}{Z^{n}}\right| + \frac{|a_{i}|}{R^{n}} + \frac{|a_{z}|}{R^{n-2}} + \dots + \frac{|a_{n-1}|}{R}$
 $\frac{1}{|z|} \le \frac{1}{R}$
Note that $\frac{|a_{z}|}{R^{n-z}} \rightarrow 0$ as $R \rightarrow \infty$ (for $0 \le i \le n-1$).
Note that $\frac{|a_{z}|}{R^{n-z}} < 0$ by enough so that
 $\frac{|a_{z}|}{R^{n-z}} < \frac{|a_{n}|}{2n}$

for all
$$0 \le i \le n-1$$
.
Fix such an R>O.
Then if $|Z| > R$ we have
 $|W| \le \frac{|a_0|}{R^n} + \frac{|a_1|}{R^{n-1}} + \frac{|a_2|}{R^{n-2}} + \dots + \frac{|a_n|}{R}$
 $\le \frac{|a_n|}{2n} + \frac{|a_n|}{2n} + \frac{|a_n|}{2n} + \dots + \frac{|a_n|}{2n}$
 $= n\left(\frac{|a_n|}{2n}\right) = \frac{|a_n|}{2}$

So if
$$|z| \ge R$$
, then
 $|a_n + w| \ge ||a_n| - |w|| = |a_n| - |w| \ge |a_n| - \frac{|a_n|}{2} = \frac{|a_n|}{2}$
 $|w| \le \frac{|a_n|}{2} \le |a_n|$
 $|w| \le \frac{|a_n|}{2} \le |a_n|$
 $|w| \le \frac{|a_n|}{2} \le \frac{|a_n|}{2} = \frac{|a_n|}{2}$
Thus, if $|z| \ge R$, then
 $|P(z)| = |a_n + w|| \ge^n |\ge \frac{|a_n|}{2} \cdot R^n$
Thus, if $|z| \ge R$, then
 $|f(z)| = \frac{1}{|P(z)|} \le \frac{2}{|a_n| \cdot R^n}$
 $|f(z)| = \frac{1}{|P(z)|} \le \frac{2}{|a_n| \cdot R^n}$
By analysis/topology results
since f is continuous on
 $S = \sum |z| |z| \le R$ and S
is closed and bounded (ie compact),
then f is bounded on S.
That is, there exists K>0
where $|f(z)| \le K$ if $|z| \le R$.

Let M=max 2 Ianli Rn) KZ. Then, $|f(z)| \leq M$ for all $z \in \mathbb{C}$. So, f is entire and bounded, thus by Louiville's theorem, f(z) = c for some $c \in \mathbb{C}$. But then $P(z) = \frac{1}{f(z)} = \frac{1}{c}$ for all $z \in \mathbb{C}$. But $P(z) = a \cdot t \cdot a \cdot z + \cdots + a \cdot z^n$ is not a constant function since N71 and an = U. Contradiction Thus, there must exist at least one Zcro of P(z) in \mathbb{C} .