

Lemma: Suppose f is analytic on a
region A and
$$|f(z)|$$
 is constant on A.
Then $f(z)$ is constant on A.
proof: Suppose that $f(x+iy) = u(x,y)+iv(x,y)$.
We are assuming that for all $x+iy \in A$ we have
 $|f(x+iy)|^2 = (\sqrt{u(x,y)^2 + v(x,y)^2})^2 = (u(x,y))^2 + (v(x,y))^2 = c$
for some constant $c \in \mathbb{R}$, $c > 0$.
If $c=0$, then $|f(x+iy)|=0$ for all $x+iy \in A$.
Then, $f(x+iy) = 0$ for all $x+iy \in A$.
Then, $f(x+iy) = 0$ for all $x+iy \in A$.
Then f is constant on A.
So we can now assume $c \neq 0$.
We know $(u(x,y))^2 + (v(x,y))^2 = c$ on A.
Differentiating we get
 $2u \frac{\partial u}{\partial x} + 2v \frac{\partial v}{\partial y} = 0$
 $zu \frac{\partial u}{\partial y} + 2v \frac{\partial v}{\partial y} = 0$
Since f is analytic on A we know $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$
and $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ on A.

Sub these into (*1 and divide by 2 to get $u \frac{\partial u}{\partial x} - v \frac{\partial u}{\partial y} = 0 \qquad (++)$ $v \frac{\partial u}{\partial x} + u \frac{\partial u}{\partial y} = 0$ on A. Then (**1 becomes $\begin{pmatrix} u & -v \\ v & u \end{pmatrix} \begin{pmatrix} \partial u \\ \partial u \\ \partial y \\ \partial y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$ (***) For any fixed input (x,y) the above linear system has two equations and two "unknowns." Since det $\begin{pmatrix} u - v \\ v \end{pmatrix} = u^2 + v^2 = c \neq 0$ there is only one unique solution to (*++) which is $\frac{\partial u}{\partial x}(x,y) = \frac{\partial u}{\partial y}(x,y) = 0.4$ Thus, if xtiyEA then $f'(x + iy) = \frac{\partial u}{\partial x}(x, y) + i \frac{\partial v}{\partial x}(x, y)$ $= \frac{\partial u}{\partial x} (x,y) - i \frac{\partial u}{\partial y} (x,y)$ So, f'=0 on the region A. By a previous constant F.

Theorem: (Special case of max modulus theorem).
Suppose that f is analytic on
$$D(z_0; z)$$

where $z_0 \in \mathbb{C}$ and $z \in \mathbb{R}$, $z \ge 0$.
If $|f(z)| \le |f(z_0)|$ for all $z \in D(z_0; z)$,
then f is constant on $D(z_0; z)$.
 $p(z_0; z)$
 $p(z_0; z)$
 $p(z_0; z)$
 $p(z_0; z)$
 $p(z_0; z)$
 $p(z_0; z)$
Let $z_1 \in D(z_0; z)$ where $z_1 \neq z_0$.
Let $p = |z_1 - z_0|$
Let y_p be the circle centered at z_0 with
radius p, oriented counterclockwise.
By the Cauchy-integral theorem
 $f(z_0) = \frac{1}{2\pi i} \int \frac{f(z)}{z_0 - z_0} dz$
Parameterize z_p as $y_p(z) = z_0 + pe^{izt}$
where $0 \le z \le 2\pi$. And $y_p(z) = ipe^{izt}$.

So we get
$$f(z_0) = \frac{1}{2\pi i} \int_{0}^{2\pi} \frac{f(z_0 + pe^{ix})}{(z_0 + pe^{ix}) - z_0} \cdot ipe^{ix} dx$$

$$= \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + pe^{ix}) dx$$
From (*) we get
$$|f(z_0)| = |\frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + pe^{ix}) dx|$$
T put a
$$f(z_0)| = |\frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + pe^{ix}) dx|$$
T put a
$$f(z_0)| = \frac{1}{2\pi} \int_{0}^{2\pi} f(z_0 + pe^{ix}) dx$$

$$f(z_0 + pe^{ix})| dx$$

$$f(z_0)| = \frac{1}{2\pi} \int_{0}^{2\pi} |f(z_0 + pe^{ix})| dx$$

$$f(z_0)| = \frac{1}{2\pi} \int_{0}^{2\pi} |f(z_0 + pe^{ix})| dx$$

$$f(z_0)| = \frac{1}{2\pi} \int_{0}^{2\pi} |f(z_0 + pe^{ix})| dx$$

$$f(z_0)| \leq \frac{1}{2\pi} \int_{0}^{2\pi} |f(z_0 + pe^{ix})| dx$$

$$f(z_0)| \leq \frac{1}{2\pi} \int_{0}^{2\pi} |f(z_0 + pe^{ix})| dx$$

$$f(z_0)| = \frac{1}{2\pi} \left[|f(z_0)| \cdot (2\pi - 0) \right] = |f(z_0)|$$

Thus,
$$|f(z_{\circ})| = \frac{1}{2\pi} \int_{0}^{2\pi} |f(z_{\circ}+pe^{it})| dt$$

So, $\frac{1}{2\pi} \int_{0}^{2\pi} |f(z_{\circ})| dt = \frac{1}{2\pi} \int_{0}^{2\pi} |f(z_{\circ}+pe^{it})| dt$
Thus, $\frac{1}{2\pi} \int_{0}^{2\pi} \left[\frac{|f(z_{\circ})| - |f(z_{\circ}+pe^{it})|}{|g(z_{\circ}+pe^{it})|} \right] dt = 0$
We are integrating a continuous function that is
 $= 0$
We are integrating a continuous function that is
 $= 0$
We are integrating a continuous function that is
 $= 0$
We are integrating a continuous function that is
 $= 0$
We are integrating a continuous function that is
 $= 0$
We are integrating a continuous function that is
 $= 0$
We are integrating a continuous function that is
 $= 0$
We are integrating a continuous function that is
 $= 0$
We are integrating a continuous function that is
 $= 0$
for and the integral equals 0.
The only way this can happen is if
 $|f(z_{\circ})| - |f(z_{\circ}+pe^{it})| = 0$
for all t.
So, $|f(z_{\circ})| = |f(z_{\circ}+pe^{it})|$ for all t.
 $= 0$
In panticular, $|f(z_{\circ})| = |f(z_{\circ})| = |f(z_{\circ})|$

Since
$$z_1$$
 was anbitrary, $|f(z_0)| = |f(z)|$
for all $z \in D(z_0; z)$.
So, $|f(z)|$ is constant on $D(z_0; z)$.
By the lemma, f is constant
on $D(z_0; z)$.

Theorem: (Max modulus theorem)
Suppose that f is analytic on a region A
and f is not constant on A.
Then f does not have a maximum value on A.
That is, there does not exist ZoEA
where
$$|f(z)| \leq |f(z_0)|$$
 for all ZEA.

proof: Churchill/Brown book maybe in Hoffman/Mandeden book.