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Do at least two (2) problems from Section 1 below, and at least three

(3) problems from Section 2 below. All problems count equally. If you

attempt more than two problems from Section 1, the best two will be

used. If you attempt more than three problems from Section 2, the

best three will be used. Be sure to show your work for all answers.

(1) Write in a fairly soft pencil (number 2) (or in ink if you wish)

so that your work will duplicate well. There should be a supply

available.

(2) Write on one side of the paper only.

(3) Begin each problem on a new page.

(4) Assemble the problems you hand in in numerical order.

Exams are graded anonymously, so put your name only where

directed and follow any instructions concerning identification

code numbers.
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SECTION 1 – Do two (2) problems from this section. If you

attempt all three, then the best two will be used for your

grade.

Spring 2024 #1. Let R denote the set of real numbers, and let Q
denote the set of rational numbers.

Define f : R → R by

f(x) =

1 if x ∈ Q

0 if x /∈ Q

Prove that for all a ∈ R, we have that f is not continuous at a.

SOLUTION:

There are many ways to prove this. One can be found here:

https://en.wikipedia.org/wiki/Dirichlet_function

Spring 2024 #2. Use the definition of limits to show that

lim
n→∞

1

(n+ 1)2
= 0.

Proof. Let ϵ > 0. We must find a natural number N such that∣∣∣∣ 1

(n+ 1)2
− 0

∣∣∣∣ < ϵ.

Note that this can be rewritten as

1

(n+ 1)2
< ϵ.

First, we may use the Archimedean property to find N ∈ N so that

1

ϵ
< N.

https://en.wikipedia.org/wiki/Dirichlet_function
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Next, let n ≥ N , n ∈ N. Then
1

ϵ
< N ≤ n < n+ 1 < (n+ 1)2,

from which we conclude that

1

(n+ 1)2
< ϵ

whenever n ≥ N . □

Spring 2024 #3. Let {xn} and {yn} be bounded sequences in R.
Show that

lim inf(xn + yn) ≥ lim inf xn + lim inf yn.

Proof. Because {xn} and {yn} are bounded sequences, so is {xn + yn},
so all the lim infs here exist.

Let L = lim inf(xn + yn). Let Lx = lim inf xn and Ly = lim inf yn. We

will show that L ≥ Lx + Ly.

Let ϵ > 0. Then there exists Mx ∈ N such that if n ≥ Mx, then

xn ≥ Lx− 1
2
ϵ. Similarly, there exists My ∈ N such that if n ≥ My, then

yn ≥ Ly − 1
2
ϵ.

Let M = max{Mx,My}. It follows that if n ≥ M , then

xn + yn ≥ (Lx −
1

2
ϵ) + (Ly −

1

2
ϵ) = Lx + Ly − ϵ.

Because ϵ was arbitrary, it follows that L ≥ Lx + Ly. □

SECTION 2 – Do three (3) problems from this section. If you

attempt more than three, then the best three will be used for

your grade.
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Spring 2024 #4. Let C([0, 1]) denote the set of continuous functions

on [0, 1], with the L∞ norm defined by

∥f∥L∞ = sup
x∈[0,1]

|f(x)|.

Let h ∈ C([0, 1]). For f ∈ L2([0, 1]), define T (f) = h(x)f(x).

(a) Show that T maps L2([0, 1]) to itself.

(b) Show that T is a bounded operator.

(c) Show that ∥T∥ ≤ ∥h∥L∞ .

Proof. For part (a): Observe that

∥T (f)∥L2([0,1]) =

(∫ 1

0

|T (f)(x)|2 dx

) 1
2

=

(∫ 1

0

|h(x)f(x)|2 dx

) 1
2

≤

∫ 1

0

(
sup

x∈[0,1]
|h(x)|

)2

|f(x)|2 dx

 1
2

= ∥h∥L∞∥f∥L2 .

Since each norm on the right-hand side is finite, it follows that

T (f) ∈ L2.

For part (b): Set k = ∥h∥L∞ . Then the previous inequality implies

that there exists a k > 0 such that

∥T (f)∥L2 ≤ k∥f∥L2 .

By definition, we have that T is a bounded operator on L2.

For part (c): Let ∥f∥L2 ≤ 1. Then the inequality above implies that

∥T (f)∥L2 ≤ ∥h∥L∞ ,
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and this holds for all such f . Taking the supremum, we see that

∥T∥ = sup{∥T (f)∥L2 : ∥f∥L2 ≤ 1} ≤ ∥h∥L∞ .

□

Spring 2024 #5. Recall that

ℓ2 =

{
(a1, a2, a3, . . . ) | a1, a2, a3, · · · ∈ C and

∞∑
j=1

|aj|2 < ∞

}
.

In other words, ℓ2 is the set of all square-summable sequences of com-

plex numbers. Let

W = {(a1, a2, a3, . . . ) | a1, a2, a3, · · · ∈ C and ∃n ∈ N such that aj = 0 ∀j ≥ n} .

In other words, W is the set of all sequences of complex numbers with

only finitely many nonzero terms.

(a) Prove that W is a linear subspace of ℓ2.

(b) Also recall that ℓ2 is a Hilbert space with inner product

⟨(a1, a2, a3, . . . ), (b1, b2, b3, . . . )⟩ =
∞∑
j=1

ajbj.

Is W a closed linear subspace of ℓ2? Prove that your answer is correct.

Hint: Consider the following sequence of sequences.

x1 = (1, 0, 0, 0, 0 . . . )

x2 = (1, 1
2
, 0, 0, 0, . . . )

x3 = (1, 1
2
, 1
3
, 0, 0, 0, . . . )

...

xn = (1, 1
2
, 1
3
, . . . , 1

n
, 0, 0, 0, . . . )
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...

SOLUTIONS:

(a) Subset. First observe that W ⊂ ℓ2.

Zero vector. Also (0, 0, 0, . . . ) ∈ W .

Closed under addition. Now suppose that (a1, a2, a3, . . . ), (b1, b2, b3, . . . ) ∈
W . Then aj = 0 for all j ≥ n for some natural number n, and bj = 0

for all j ≥ m for some natural number m. Let k = max{n,m}. Then

aj + bj = 0 + 0 = 0 for all j ≥ k, so

(a1, a2, a3, . . . ) + (b1, b2, b3, . . . ) = (a1 + b1, a2 + b2, a3 + b3, . . . ) ∈ W.

Closed under scalar multiplication. Finally, suppose that (a1, a2, a3, . . . ) ∈
W and λ ∈ C. Then aj = 0 for all j ≥ n for some natural number n.

So λaj = 0 for all j ≥ n, so λ(a1, a2, a3, . . . ) = (λa1, λa2, λa3, . . . ) ∈ W .

(b) Observe that xj ∈ W for all j.

Let x = (1, 1
2
, 1
3
, . . . 1

n
, 1
n+1

, . . . ) = (1
j
)∞j=1. Because x /∈ W , it will suffice

to show that xm → x as m → ∞.

To do so, it is enough to show that ∥x − xm∥ → 0 as m → ∞. (The

norm here is the norm induced by the given inner product.)

We compute that

x− xm = (0, 0, . . . , 0,
1

m+ 1
,

1

m+ 2
, . . . ).

Therefore ∥x− xm∥2 = ⟨x− xm, x− xm⟩ =
∑∞

j=m+1
1
j2
.

Recall that
∑∞

j=1
1
j2

converges. Therefore
∑∞

j=m+1
1
j2

→ 0 as m → ∞.
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Spring 2024 #6. Let M be an arbitrary non-empty set, and define

d : M ×M → R by

d(x, y) =

0 if x = y,

1 if x ̸= y.

(a) Show that d defines a metric on M .

(b) Let {xn} be a sequence in M . Show that {xn} converges to x in

(M,d) if and only if there exists N ∈ N such that xn = x for n ≥ N .

(a)

Proof. First observe that d(x, y) is a nonnegative real number for all

x, y ∈ M .

Next, d(x, y) = 0 if and only if x = y, by definition of d.

Next, d(x, y) = 0 = d(y, x) if x = y, and d(x, y) = 1 = d(y, x) if x ̸= y.

Finally, we prove the triangle inequality. That is, let x, y, z ∈ M . We

will show that

d(x, y) + d(y, z) ≥ d(x, z).

Case 1: x = y

Then d(x, y) + d(y, z) = 0 + d(x, z) ≥ d(x, z).

Case 2: x ̸= y

Then d(x, y) + d(y, z) = 1 + d(x, z) ≥ 1 ≥ d(x, z). □

(b)

Proof. First suppose lim xn = x. By def. of limit, this means that for

all ϵ > 0, there exists N ∈ N such that if n ≥ N , then d(xn, x) < ϵ.
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Because we know this “for all” statement is true, we may choose ϵ at

will. Let ϵ = 1. Then there exists N ∈ N such that if n ≥ N , then

d(xn, x) < 1. But for this metric (the discrete metric), we have that

d(xn, x) < 1 if and only if xn = x, so the result follows.

Conversely, suppose that there exists N ∈ N such that if n ≥ N , then

xn = x. Let ϵ > 0. It follows that if n ≥ N , then d(xn, x) = d(x, x) =

0 < ϵ. Therefore xn → x. □

Spring 2024 #7. Let f(t) = t2 for t ∈ [−π, π] , and extend it to be

2π-periodic on R.

(a) Find the Fourier series of f(t) in trigonometric form.

(b) Use the result of Part (a) to show that:

∞∑
n=1

(−1)n+1

n2
=

π2

12
.

Solution:

We are given a function f(t) = t2 for t ∈ [−π, π], and it is extended to

be 2π-periodic on R. We are asked to find the Fourier series of f(t) in

trigonometric form and use this to show that:

∞∑
n=1

(−1)n+1

n2
=

π2

12
.

(a) Fourier Series of f(t)

The Fourier series of a 2π-periodic function f(t) is given by:
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f(t) =
a0
2

+
∞∑
n=1

(an cos(nt) + bn sin(nt)) ,

where the Fourier coefficients a0, an, and bn are computed as follows:

a0 =
1

π

∫ π

−π

f(t) dt,

an =
1

π

∫ π

−π

f(t) cos(nt) dt, n ≥ 1,

bn =
1

π

∫ π

−π

f(t) sin(nt) dt, n ≥ 1.

Step 1: Compute a0

To find a0, we use the formula:

a0 =
1

π

∫ π

−π

t2 dt.

Since t2 is an even function, we can double the integral over [0, π]:

a0 =
2

π

∫ π

0

t2 dt.

The integral is straightforward:

∫ π

0

t2 dt =

[
t3

3

]π
0

=
π3

3
.

Thus:

a0 =
2

π
· π

3

3
=

2π2

3
.

Step 2: Compute an
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Next, we compute an for n ≥ 1. The formula for an is:

an =
1

π

∫ π

−π

t2 cos(nt) dt.

Since t2 cos(nt) is an even function, we can double the integral over

[0, π]:

an =
2

π

∫ π

0

t2 cos(nt) dt.

We can integrate by parts. Let’s choose u = t2 and dv = cos(nt) dt.

Then:

du = 2t dt,

v = sin(nt)
n

.

Using integration by parts:

∫ π

0

t2 cos(nt) dt =

[
t2 sin(nt)

n

]π
0

−
∫ π

0

2t sin(nt)

n
dt.

The boundary term
[
t2 sin(nt)

n

]π
0
evaluates to zero because sin(nπ) = 0

for all integers n. Thus, we are left with:

∫ π

0

t2 cos(nt) dt = − 2

n

∫ π

0

t sin(nt) dt.

Next, we compute the integral
∫ π

0
t sin(nt) dt by parts again. Let u = t

and dv = sin(nt) dt. Then:

du = dt, v = − cos(nt)
n

.

The integration by parts gives:
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∫ π

0

t sin(nt) dt =

[
−t cos(nt)

n

]π
0

+
1

n

∫ π

0

cos(nt) dt.

The boundary term
[
− t cos(nt)

n

]π
0
evaluates to

−π cos(nπ)

n
= (−1)n

π

n

The remaining integral
∫ π

0
cos(nt) dt evaluates to zero for all n ≥ 1.

Thus, we conclude that:

Plugging everything back in, we get

an =
2

π

(
− 2

n

)(
(−1)n

π

n

)
=

(−1)n4

n2
.

Step 3: Compute bn

Now, we compute bn for n ≥ 1. The formula for bn is:

bn =
1

π

∫ π

−π

t2 sin(nt) dt.

Since t2 sin(nt) is an odd function, the integral over [−π, π] is zero:

bn = 0 for all n ≥ 1.

Fourier Series

Thus, the Fourier series for f(t) = t2 is:

f(t) =
a0
2

+
∞∑
n=1

(an cos(nt) + bn sin(nt)) =
π2

3
+

∞∑
n=1

(−1)n4

n2
cos(nt)
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(b) Use the Fourier Series to Show the Identity

The function f is differentiable at 0.

Thus the Fourier series for f converges to f(0) when t = 0.

Hence we have:

f(0) = 0 =
π2

3
+

∞∑
n=1

(−1)n4

n2
.

Here we use that cos(n · 0) = 0.

Bringing the sum to the other side and dividing by 4, we find that

∞∑
n=1

(−1)n+1

n2
=

π2

12
.


