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ABSTRACT

Fuzzy Logic Control of a Natural Convection Loop

By

Daniel S. Lopez

In this work, three different fuzzy controllers were developed to investigate their abil-

ity to stabilize flow and temperature of a single-phase fluid in a natural convection loop.

The toroidal convective loop is filled with an incompressible fluid that exchanges en-

ergy throughout it. Half of the loop has a known heat input, while the other half has

a known heat output. Normally, buoyancy forces – produced by temperature differ-

ences within the fluid – drive the fluid flow inside the thermosyphon, generating three

possible flow scenarios: stable, oscillatory and chaotic behavior. For the analysis, one-

dimensional models are first developed from the momentum and energy equations using

the Boussinesq approximation, and by assuming averaged values of velocity and temper-

ature over the cross-section of the torus. The resulting system of differential equations

are then converted to a nonlinear dynamical system and solved under various operating

conditions. The controllers are built using fuzzy logic, which has the ability to describe

complex systems in terms of linguistic variables, following expert-based if-then rules to

make inferences about their behavior. Quantification of the linguistic variables is done

via triangular and trapezoidal membership functions, and the rules are built from nu-

merical data under different operating conditions from the mathematical model. Since

the tilt angle for the loop and the heat flux are used as the parameters characterizing its

dynamic behavior, these are the manipulated variables, whereas the control variables are
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average fluid velocity and temperatures inside the loop. SIMULINK is used to imple-

ment the fuzzy controllers, along with the corresponding control actions, while numerical

experiments are conducted to assess their relative performance. Results demonstrate the

following: 1) all three controllers were succesfully able to maintain stability and fluid

flow in this system with constant heat flux 2) the tested controller was able to maintain

stability and fluid flow in the system with a variable heat flux by also varying the set-

point of the feedback loop, and 3) the more information that is given to the controller

the better can perform.
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CHAPTER 1

Introduction

A thermodynamic system is a device or environment that contains elements to be studied

in the context of energy exchange within the system and between the system and the

environment. One key mechanism of energy exchange in this system is heat transfer. Heat

transfer is defined as the exchange of thermal energy due to a difference in temperature.

These systems can be observed in nature when the sun heats up the shoreline or when

hot springs are heated from below the earth’s surface. They can also be found in many

human made applications such as air conditioners and furnaces. There are three different

modes in which heat transfer can occur: conduction, convection, or thermal radiation.

Conduction is the transfer of heat through a stationary medium, which can be a solid

or fluid. This occurs due to the interaction between particles with more energy, and

particles with less energy. Convection is the transfer of heat between a surface and a

moving fluid, when there is a difference in temperature. The energy is transferred in

part from random molecular motion (diffusion), and in part from the bulk motion of the

moving fluid (advection). Radiation is a bit more complex. All matter above absolute

zero emit energy in the form of electromagnetic waves. When two surfaces are at different

temperatures, and lack a connecting medium, a net exchange of energy will occur. This

heat transfer is called thermal radiation. This study will primarily focus on convective

heat transfer within a fluid.

Convection can be classified by the driving force of its flow. Forced convection uses

an auxiiliary device, usually a pump or a fan, to induce flow in a system. This requires
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additional energy to operate that device. Free (natural) convection depends on temper-

ature changes within a fluid, which create density changes, and in turn create buoyant

forces that will drive the fluid flow [1]. This does not require additional energy and ad-

vancements in technology have allowed this type of convection to be used in both large

and small scale engineering applications.

An example of natural convection is a geothermal power plant, which is shown in Fig.

1.1(a). In this large-scale engineering system, wells are dug deep below the earth’s surface

and filled with a fluid, which is then heated up by its surroundings. This causes the fluid

to rise and turn into steam, which then operates a turbine for electric power. The steam

then condenses and returns into the ground. A more straightforward example is a simple

heat sink used on electronics and small engines as shown in Fig. 1.1(b). The cooling fins

absorb heat from the base causing their temperature to rise. The fins then transfer that

energy to adjacent air. With an increase in temperature, and decrease in density, that

air begins to rise and displace the cooler air above it. This less dense and cooler air now

falls and replaces the hotter air adjacent to the fins and the cycle continues. This cycle

of moving fluid is the principle behind a natural convection loop.

1.1 Natural Convection Loops

A natural convection loop, also known as thermosyphon, is a thermal device that circu-

lates fluid in a closed pipe. This loop contains a fixed section that receives heat and a

fixed section that releases heat, generally through a heat exchanger or heated coil. The

location of these fixed sections vary by thermosyphon design. The pipe is filled with a

fluid, usually water for single phase or a refrigerant for multiphase studies. The purpose
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(a) Geothermal power plant. (b) Electronic cooling.

Figure 1.1: Sample engineering applications of natural convection.

of a thermosyphon is to transfer heat from one place to another via buoyancy driven

fluid flow instead of using an auxiliary pump. For example, in the geothermal system

the heat from the earth is transferred to the fluid which rises and produces work in the

turbine. In the heat sink system, the heat generated from the electric part is transferred

to the cooling fins, then to the surrounding air. The ability to control the transfer of

heat in a thermal system is a critical tool in a wide variety of engineering applications

and disciplines. The analysis of heat transfer in small scale systems and simulations can

provide valuable insight to develop strategies for larger and more complex applications.

In 1973, Japiske [2] provided an excellent review of heat transfer within a natural

convection loop. The work covers many variations including open loop, closed loop,

single phase, and two-phase systems. Extensive research in fluid flow behavior within

natural convection loops have since been studied [3]-[11]. These studies have looked at
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Figure 1.2: Different thermosyphon configurations.

the different fluid dynamic characteristics that affect flow and stability including the

Graetz, Prandtl, and Reynolds numbers, in addition to different configurations of the

heated/cooled sections. Examples of these different heat input and output locations,

colored red and blue respectively, are shown in Fig. 1.2. The last configuration in the

figure is a toroidal thermosyphon that rotates about its center, allowing the heated and

cooled section to move with a given tilt angle α. This particular configuration has been

studied by several authors [6]-[11] and will be the subject of this study. The toroidal

thermosyphon in this study has two variable parameters. The first variable parameter

is tilt angle α, which maps the location of the heated/cooled sections as they rotate

about the center. The second is the amount of heat, Q, added or removed from the

system. The right combination of those two parameters can induce flow by creating

a temperature and density differential in the fluid, which creates buoyant forces. This

study does that by having the heat input section near the bottom of the system, and the

heat output section near the top. As the fluid near the bottom is heated, its temperature

increases and its density decreases, causing it to rise and displace the fluid at the top.
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As the fluid near the top is cooled, its temperature decreases and its density increases,

causing it to fall and replace the fluid at the bottom. In addition to these heat input and

output conditions, the thermosyphon can also be rotated with a certain degree of tilt

to manipulate the buoyant forces and fluid flow. The right combination of tilt and heat

input can induce fluid flow in the tube without the need for an auxiliary pump, which

can reduce energy consumption of the system. This energy savings can be scaled for a

variety of engineering applications from computer electronics to residential solar water

heaters to nuclear cooling. Several studies have looked at its detailed application in solar

heater applications [12] - [14]. Fluid flow stability is critical to maintain efficient heat

transfer in this system and will be investigated thoroughly in this research.

1.2 Review of System Dynamics

To investigate stability of the system, one-dimensional models have been used extensively,

and a number of reports exist in the literature, as described in this section. Creveling et

al. [3] investigated the effects of the tilt angle on the stability of a toroidal thermosyphon

with the heated/cooled sections rotated about its center. Their analysis focused on the

influence of both friction factor and Reynolds number upon the fluid flow stability. The

study compared the one-dimensional analytical data with experimental data. Damerell

and Schoenhals [4] studied a similar setup that compared analytical and experimental

data. Fluid oscillations and direction reversals were observed and it was concluded that

stability was not achievable at certain heat input rates. In addition, analytical and

experimental results did not agree at all tilt angles. Grief et al. [5] studied transient

velocity and temperature stability using the tilted model with fixed heated and cooled
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sections. From this, fluid velocity and temperature profiles were obtained. Mertol et al.

[6] used a two-dimensional analysis and concluded there are significant velocity variations

in the radial and axial directions that are not considered in one-dimension. Effects from

the heat transfer coefficient and Graetz number were also considered. Lavine et al. [7] did

a three-dimensional analysis on this system with a variable tilt angle. Streamwise flow

reversals and secondary motion at the wall were observed. The flow reversals reduced

wall friction and buoyancy forces which significantly affected the averaged fluid velocity.

Graetz, Prandtl, and Reynolds number were considered in addition to tilt angle. Their

study discovered key flow phenomena that are not shown in one-dimensional or two-

dimensional analyses. Lavine et al. [8] continued this research by investigating the

effects of Grashof number in a three-dimensional analysis. Bernier and Baliga [9] used a

thermosyphon that used heated and cooled sections on the left and right side instead of

top and bottom. The work investigated mixed convection effects and the experimental

results agreed with the numerical ones in both one and two-dimensional analysis. Bernier

and Baliga [15] continued their work to use higher Grashof numbers. They concluded

the one-dimensional models suffered in accuracy due to the distortion of velocity and

temperature profiles. Pacheco-Vega et al. [10] analyzed the one-dimensional toroidal

thermosyphon with heated and cooled section at the bottom and top sides with an

adjustable tilt angle about the center. His research looked at three different combination

of heat conditions: known heat flux around the loop, known temperature around the

loop, and a mixture of these conditions. Stability was analyzed with the tilt angle and

heat input as the variable inputs. A 4th order Runge-Kutta numerical simulation was

used for the non-dimensional analytical analysis and a set of three nonlinear equations
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were developed to model the system behavior. Three distinct stability behaviors were

produced from a steady state analysis as a function of the two input parameters: stable

flow, limit cycle flow, and chaotic flow. Understanding flow stability is key in the design of

a natural convection loop system to ensure efficient heat transfer. If it can be understood

well enough it can also be controlled.

1.3 Review of Fuzzy Logic Control

Thermal systems are designed to move heat from one place to another. To do this ef-

ficiently, a robust controller must be implemented. The control of thermal systems is

particularly difficult due to the dynamic nature of the fluid flow and convective heat

transfer [11]. These applications can range from heat exchangers to residential cooling

to HVAC (heating ventilation air-conditioning) systems in multi-level commercial build-

ings. System controllers for most thermal systems operate on some combination of a

temperature feedback loop. It will have a setpoint, a controller, a plant (experimental

or simulation) and a summation block to compare the existing value to setpoint value.

In most applications PID (proportional integral derivative) controllers are used but they

leave a lot to be desired. The need for constant retuning can lead to poor performance,

which can lead to an increase in energy costs. There is a need for a more efficient control

strategy that will provide the robustness and efficiency these systems require. There have

been many studies done on the application of fuzzy logic to control thermal systems.

Fuzzy logic (FL) uses linguistic terms to develop rules based on previous knowledge.

It uses membership functions which create fuzzy sets, allowing it to control systems with

vague or imprecise data [16]. What distinguishes FL from traditional control is the fuzzy

7



Figure 1.3: Elements and membership in crisp and fuzzy sets.

sets, which allow the elements to belong or partially belong to a set or sets. This contrasts

the binary logic of a crisp set which says an element either belongs or does not belong.

Fuzzy logic has been studied extensively over the past 50 years and has shown promise

in several engineering applications. In 1965, Zadeh [17] first developed the concept of

fuzzy sets and membership functions. He observed that objects in the real world do not al-

ways fully belong, or not belong, to a specific classification. Human logic does not always

clearly define what class or classes something belongs to and the lines can be imprecise

or “fuzzy”. In 1975, Mamdani and Assililan [18] studied a linguistic synthesis experience

on a controller for a steam plant. They observed the logic that a traditional control uses

to make decisions and the logic a human uses are not the same. This study revealed that

a fuzzy logic controller was able to use human experience to operate. The results showed

the fuzzy logic controller had better quality of control compared to a traditional one. In

1996, Ralescu [19] wrote about a surge in fuzzy logic controllers in Japan. He stated that

due to a lack of natural resources, Japan relied heavily on efficient energy management.
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Fuzzy logic was used in steel technology artificial intelligence, among other applications.

In 2005, Salsbury [20] surveyed control technologies in the building automation industry.

System performance demands have increased due to environmental policies and rising

energy costs. In commercial HVAC applications, automation has helped reduce costs by

prioritizing energy savings over precision. Single input single output (SISO) systems are

common with the room temperature as the input signal and the angle of the air dampener

as the output signal. The main challenge is that the air systems in these buildings are

time variant and nonlinear, which lead to sluggish or oscillatory control with a constant

need for retuning. Suggestions have been made to implement new control systems such

as fuzzy logic, neural networks, or updated plant models. In addition to HVAC systems,

fuzzy logic has been applied to heat exchangers as well. In 2009, Ruiz-Mercado et al.

[21] developed a Takagi-Sugeno fuzzy dynamic model for concentric-tube heat exchang-

ers. The logic rules were derived from previously collected experimental flowrates and

fluid temperatures. The model was able to accurately predict the nonlinear behavior

of the system. Garpinger et al. [22] explored performance and robustness of PID con-

trollers. PID controllers operate with simple tuning rules based on process models with

few parameters. Controlled systems have certain requirements such as load disturbance

reduction, robustness for uncertainty, noise control, and set point tracking. For PID

controls, there is a tradeoff between performance and robustness that must be balanced.

In 2015, Underwood [23] published a study on fuzzy logic used to control domestic heat

pumps. In this work, a new dynamic model was developed and validated. This new con-

troller showed good tracking of the system and furthermore reduced energy consumption

by 20 percent. In 2016, Soufi et al. [24] implemented a fuzzy logic control strategy in a
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photovoltaic system. It showed a faster tracking speed, zero oscillations, and the ability

to operate in extreme weather conditions. This, combined with faster computing, allows

this controller to increase performance and reduce costs. Fuzzy logic has been shown to

be capable of controlling thermal systems in a variety of engineering applications. This

work will extend the application to control the fluid flow stability in a toroidal natural

convection loop.

1.4 Objectives

The objective of this thesis is to develop a robust control strategy, using fuzzy logic, to

control the flow stability in a toroidal natural convection loop. To achieve this, a fuzzy

logic controller is developed using the change in velocity (signal error), which is an excel-

lent indicator of stability of the system. Several iterations of this fuzzy logic controller

were developed; the first using only the signal error, the second adding the change in

signal error, and the last adding the integration of the signal error. Each iteration added

more information than the previous. Robustness was tested using different initial condi-

tion scenarios to ensure the controller could provide stability to the system as subjected

to various perturbations that may occur. Testing included holding one variable steady

while controlling the other to achieve and maintain stability, as well as varying both input

variables simultaneously to determine what degree of stability, if any, could be achieved

in an unstable region.

1.5 Thesis Overview

The contents of this document are organized in the following manner. Chapter 1 provides

an introduction and brief summary of the subject matter as well as a literature review.
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Chapter 2 provides a detailed description of the thermosyphon system as well as a mass,

momentum, an energy balance that established the governing set of equations. Chapter 3

provides a steady state and dynamic analysis that describes the systems behavior. Chap-

ter 4 provides an introduction to fuzzy logic and how it will be utilized on this system.

Chapter 5 provides the stability results from implementing the fuzzy logic controller into

this thermo-fluid system. In Chapter 6, the conclusions from this work are discussed as

well as possible directions for future work.

Appendices are attached to this document to provide details not covered in the main

text. Appendix A covers a detailed derivation of the dynamical system from the governing

equations. Appendix B covers in detail the linear stability analysis using the Routh-

Hurwitz Stability Criterion. Appendix C covers the MATLAB script used to solver the

system of three ordinary differential equations.
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CHAPTER 2

Problem Description and Mathematical Model

In Chapter 1, a summary of heat transfer, natural convection loops, system dynamics,

and fuzzy logic was covered. Past research in these fields of study was covered in a

literature review and the contributions this current work aims to provide. In this chapter,

a detailed derivation will be covered in order to lead the reader to the final set of governing

equations, provided as a dynamical system.

2.1 Description

The mathematical model of a toroidal natural convection loop was derived and summa-

rized in the work of Pacheco-Vega et al. [10]. To this end, the present work follows

the study by Hummel [25]. Consider a loop filled with a single-phase fluid, as depicted

in Fig. 2.1. The tube diameter is d and the length from the center of the loop to the

midpoint of the tube is R, with R � d. The angle θ describes the position along the

circumference of the loop and the regions where heat enters and leaves the device. From

0◦ < θ < 180◦ heat leaves the system whereas from 180◦ < θ < 360◦ heat enters the

system. This creates a temperature difference in the fluid, further creating a density

difference, thus causing its motion. There are three possible heating conditions: known

heat flux, known wall temperature and mixed conditions, all of which have been ana-

lyzed by Pacheco-Vega et al. [10]. These conditions determine if the heat flux or the wall

temperature are known over the entire loop, or if these quantities are known for different

parts of the loop.
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Figure 2.1: Toroidal thermosyphon.

2.2 Mathematical Model

The present study focuses on the “known heat flux” heating condition. Although a similar

type of system has been modeled using two-dimensional versions of the conservation

equations [6], one-dimensional versions have been very useful in studying the dynamics

in these systems, and it is the type of model that will be used in this work. As it will

be shown later in this section, mass conservation provides a velocity independent of the

spatial coordinate; i.e., u = u(t) and T = T (t, θ), which are the dependent variables,

whereas time t and the angle θ, as measured from the boundary separating heat input

and output values, are the independent variables. Finally, the angle of inclination, α

(also known as tilt angle), is one of the input parameters with heat flux as the other.

As shown in Fig. 2.1, the length of the tube is L, where L = 2πR with a cross section
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A, where A = d2π/4. Previously developed one-dimensional models have been compared

against experimental data to predict the variation of flow rates. These results have been

in agreement with experiments, as mentioned by Damerell and Schoenhals [4]. As a

result, flow characteristics such as temperature and velocity profiles are assumed to be

uniform at any given cross-sectional area. Next, the spacial variable s, where s = Rθ, is

used to transfer the circular tube in cylindrical coordinates to a straight tube in cartesian

coordinates.

To derive the mathematical equations that describe the thermal and fluid dynamics

of this system, a balance of mass, momentum, and energy on a differential control volume

of the torus is conducted. Thus, by following the work of Hummel [25], the three balance

equations will follow the expression

E − S ±G = Ast, (2.1)

where E are in inlet terms, S are the outlet terms, G are the generation terms, and Ast

are the accumulated terms. These balance methods will be covered in the next three

sections.

2.2.1 Mass Balance

A differential element of the thermosyphon is shown below in Fig. 2.2(a). Consider an

infinitesimal one-dimensional control volume, shown in Fig. 2.2(b) and described with
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the following mathematical equation

ṁ− (ṁ+
∂ṁ

∂s
ds) = 0 (2.2)

∂ṁ

∂s
ds = 0. (2.3)

The definition of ṁ is shown below,

ṁ =

∫
A

ρ(u · n̂)dA, (2.4)

with fluid density ρ, cross-sectional area A, and fluid velocity u in the normal direction

n̂. With a given constant cross-sectional area, the above equations reduces as follows:

ṁ = ρuA. (2.5)

With no change in mass as defined in Eq. (2.3), it follows that there also must be no

change in velocity. Further, since this is a one-dimensional analysis, velocity is taken as

the average value of the cross-sectional area.

2.2.2 Momentum Balance

The momentum balance can be applied on the same differential element as shown below

in Fig. 2.3. Two types of forces can act upon an element: body forces and surfaces

forces. Body forces act on every particle of the material and include gravitational and

magnetic forces. Surface forces act on the surface of the element and include tangential

(shear) and normal (pressure and stress) forces. The forces that are applicable in this
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(a) Differential element.

(b) Differential element, mass balance.

Figure 2.2: Differential element of the thermosyphon.

situation are from pressure, viscosity, and buoyancy. These are shown in Fig. 2.3. The

pressure force, FP is given by

Fp = PA− (P +
∂P

∂s
ds)A, (2.6)

Fp = −A∂P
∂s

ds, (2.7)
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Figure 2.3: Differential element, momentum balance.

with the pressure exerted on the element given as P . The viscous force that acts on the

fluid is given by

Fv = −τwPpds, (2.8)

with the shear stress given by τw = Kfu and the perimeter given by Pp = πd. Kf is the

assumed friction coefficient of Poiseuille flow in a circular duct and is defined as

Kf =
8µ

d
, (2.9)

where µ is the fluid’s dynamic viscosity. Note that the frictional wall shear has been

taken to be proportional to the mean fluid velocity, of the fully-developed flow - which

provides a parabolic velocity profile, and Kf is the proportional constant; i.e., the friction
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coefficient. Gravity is the main component of the buoyancy force and is given by

Fg = −ρAg̃ds, (2.10)

where ρ is the density of the fluid and g̃ is the local gravitational acceleration. Note

in the momentum balance the density is a function of the fluid’s temperature. Using

trigonometric expressions from Figure 2.3, g̃ can be expressed as

g̃(s) = g cos(θ + α), (2.11)

with θ as the angular position around the torus and α as the tilt angle. Next, consider

integrating Eq. (2.11) around the torus as follows

g̃(s) = g cos(θ + α), (2.12)∫ L

0

g̃(s)ds =

∫ L

0

g cos(θ + α)dθ, (2.13)∫ L

0

g̃(s)ds = g

[
cosα

∫ 2π

0

cos θdθ − sinα

∫ 2π

0

sinαdθ

]
, (2.14)∫ L

0

g̃(s)ds = 0. (2.15)

Note that Eq. (2.15) shows the summation of the gravitational force around the torus

equals 0 and will be important later in the derivation. The Boussinesq approximation, as

validated by Damerell and Schoenhals [4], ignored variations in density except for temper-

ature, thus, density in this problem is only a function of temperature. Its mathematical
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expression is show below

ρ = ρ0 [1− β(T − T0)] , (2.16)

with the fluid density ρ as a function of temperature, ρ0 the fluid density at the reference

temperature, β the fluid’s coefficient of thermal expansion, T = T (s, t) as the fluid tem-

perature as a function of time and space (s if tangential and θ if cylindrical coordinates),

and T0 as the reference temperature. The reference temperature used is the initial con-

dition before natural convection begins to drive the flow. To summarize, the three forces

are shown below

Fp = −A∂P
∂s

ds, (2.17)

Fv = −τwPpds, (2.18)

Fg = −ρAg̃ds. (2.19)

Newton’s second law, F = ma, is applied the differential element with the force F =

FP +Fv+Fg as the summation of individual forces listed in the above equations, the mass

m = ρ0Ads, and the acceleration a = du/dt. Below is the momentum balance derivation.

ma = F, (2.20)
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Substitute the mass, acceleration, and summation of force equivalenciess from Eqs. (2.17-

2.19),

ρ0Ads ·
du

dt
= −A∂P

∂s
ds− τwPpds− ρAg̃ds, (2.21)

Recall that the shear stress and Bousinesq approximation are, respectively, τw = Kf , u,
ρ
ρ0

=

[1− β(T − T0)], and then integrate around the torus, thus we have

du

dt
= − 1

ρ0

∂P

∂s
− KfPp

ρ0A
u− [1− β(T − T0)] g̃, (2.22)

du

dt

∫ L

0

ds = − 1

ρ0

∫ L

0

∂P

∂s
ds− KfPp

ρ0A
u

∫ L

0

ds−
∫ L

0

[1− β(T − T0)] g̃ds, (2.23)

The buoyancy term can be simplified as follows:

∫ L

0

[1− β(T − T0)] =

∫ L

0

g̃(s)ds− β
∫ L

0

T g̃(s)ds+ βT0

∫ L

0

g̃(s)ds, (2.24)

recall

∫ L

0

g̃(s)ds = 0,∫ L

0

[1− β(T − T0)] = −β
∫ L

0

T g̃(s)ds. (2.25)

Considering the buoancy term in Eq. (2.25) and the properties at s=0 and s=L are the

same since it is the same point along the torus, specifically P(0) = P(L). Along with the

substitutions for g̃(s) = g cos(θ + α);A = d2π
4

;Pp = πd; s = Rθ; ds = Rdθ;L = 2πR, we
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Figure 2.4: Differential element, energy balance.

have the following:

du

dt
= −KfPp

ρ0A
u+

β

L

∫ L

0

T g̃(s)ds, (2.26)

du

dt
+

4Kf

ρ0d
u =

βg

2π

∫ 2π

0

T cos(θ + α)dθ. (2.27)

The final momentum balance in shown above in Eq. (2.27).

2.2.3 Energy Balance

The energy balance is shown in Figure 2.4 on a differential element of the torus, and

mathematically described below

Qs +Q− (Qs + dQs) = ρ0CpAds
∂T

∂t
, (2.28)

Q− dQs = ρ0CpAds
∂T

∂t
, (2.29)
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where Qs is the heat rate entering the element, Q is the known external heat rate input

or output, and Cp is the specific heat. The two modes of heat transfer in this problem

are conduction and convection as described below

dQs =

[
ρ0cpAu

∂T

∂s
− kA∂

2T

∂s2

]
ds, (2.30)

where k is thermal conductivity. Due to the dynamic behavior of the fluid, heat transfer

from convection is assumed to be much greater than conduction with the latter considered

negligible. This assumption is reasonable for the following fluid flow conditions: paral-

lel streamlines, uniform surface conditions, very long channels [26]. The mathematical

impact is shown below

ρ0cpAu
∂T

∂s
>> kA

∂2T

∂s2
ds. (2.31)

An order of magnitude analysis of Eq. (2.31), shows that the left hand side of the

equation, corresponding to the advection of heat, is much larger than the axial heat

diffusion. Therefore,

dQs = ρ0cpAu
∂T

∂s
ds. (2.32)

In addition,
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Q = qds, (2.33)

with q as the input/output heat per unit length. Equation (2.29) can be combined with

the equations above, including s = Rθ, to arrive at the following:

∂T

∂t
+
u

R

∂T

∂θ
=

4q

πd2ρ0cp
. (2.34)

The final energy balance in shown above in Eq. (2.34).

2.3 System of Ordinary Differential Equations

After balancing the mass, momentum, and energy equations, two equations remain as

shown below

du

dt
+

4Kf

ρ0d
u =

βg

2π

∫ 2π

0

T cos(θ + α)dθ, (2.35)

∂T

∂t
+
u

R

∂T

∂θ
=

4q

πd2ρ0cp
. (2.36)

In order to analyze this problem independent of fluid properties and torus dimensions, the

previous two equations will be put into non-dimensional terms. Following the derivation

of Pacheco-Vega at al. [10], the substitutions and results equations are shown below
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T ∗ =
p2

0d
2βg

32K2
fR
· T, (2.37)

u∗ =
p0d

4KfR
· u, (2.38)

q∗ =
ρ2

0dβg

32πcpK3
fR
· q, (2.39)

t∗ =
4Kf

ρ0d
· t, (2.40)

du∗

dt∗
+ u∗ =

1

π

∫ 2π

0

T ∗ cos(θ + α)dθ, (2.41)

∂T ∗

∂t∗
+ u∗

∂T ∗

∂θ
= q∗, (2.42)

with the non-dimensional parameters indicated with the superscript ∗. The two equations

are coupled through temperature, which is a function of both time t and space s = Rθ.

Numerical methods can be used to solve u∗(t∗) and T ∗(t∗, θ∗) and analyze the dynamic

behavior of the system, however, it is expensive in both time and computation. One

solution is to use a Fourier series expansion on T ∗, as first proposed by Malkus in a

seminal paper [27], as shown below

T ∗(t∗, θ) = T c∗0 (t∗) +
∞∑
m=1

[T c∗m (t) cosmθ + T s∗m (t) sinmθ] , (2.43)

with T c∗m (t) and T s∗m (t) for m = 1, 2, ...∞ as the Fourier coefficients. This expansion is

now substituted into the momentum balance equation as shown below
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du∗

dt∗
+ u∗ =

1

π

∫ 2π

0

T ∗ cos(θ + α)dθ, (2.44)

T ∗(t, θ) = T c∗0 (t) +
∞∑
m=1

[T c∗m (t) cosmθ + T s∗m (t) sinmθ] , (2.45)

du∗

dt∗
+ u∗ =

1

π

∫ 2π

0

[
T c∗0 (t) +

∞∑
m=1

[T c∗m (t) cosmθ + T s∗m (t) sinmθ]

]
cos(θ + α)dθ. (2.46)

This systems of ODE’s have been truncated to only consider the first term of an infinite

set, where m = 1. A complete and detailed derivation can be found in Appendix A. The

three governing equations that result are as follows:

du∗

dt∗
= −u∗ + T c∗1 (t) cosα− T s∗1 (t) sinα, (2.47)

∂T c∗1 (t)

∂t∗
= −u∗T s∗1 (t), (2.48)

∂T s∗1 (t)

∂t∗
= −Q+ u∗T c∗1 (t). (2.49)

For simplification let: x = u∗, y = T c∗1 ; z = T s∗1 ,

dx

dt
= −x+ y cosα− z sinα, (2.50)

dy

dt
= −xz, (2.51)

dz

dt
= −Q+ xy. (2.52)

These set of equations contain two control parameter variables: the tilt angle α and heat

input Q. Now the complete velocity and temperature profiles can be solved for entire

loop. In the next chapter, a stability and dynamic behavior analysis will be performed.
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CHAPTER 3

Steady State and Dynamic Stability Analysis

In the previous chapter, the one-dimensional velocity and temperature profiles along the

torus were derived by solving a set of three nonlinear differential equations with the known

heat flux around the entire loop modeled as: Q = −Q̂ sin θ. The known parameters that

determine the behavior of the system are heat flux Q and tilt angle α. This chapter

describes how the fluid flow in system can show stable, limit cycle, or chaotic behavior.

3.1 Integration Methods

The linear stability analysis and numerical solutions for this system, used to determine

what type of behavior the fluid flow will exhibit, were first reported by Sen et. al [28].

In this research, the three nonlinear differential equations were solved by using a fourth

order Runge-Kutta numerical integration method developed in MATLAB (detailed in

Appendix C). The time step used was 0.01 with initial conditions for x0, y0, and z0 set

to 0. This simulation provides the entire velocity and temperature profiles, as well as

stability behavior, for any given heat flux and tilt angle value. The stability can be

determined by conducting a steady state analysis as covered in the next section.

3.2 Steady State Analysis

A steady state analysis on this toroidal thermosyhpon with known heat flux was per-

formed by Pacheco-Vega et. al [10]. In their work, the steady state solutions provide two

critical points that are key for further stability analysis. This is outlined below

Consider the velocity, x, of a fluid flow that after some amount of time, t, stabilizes

to a constant value. The change in velocity over time, dx/dt, as well as the change in
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temperature over time, dy/dt and dz/dt, would then be zero. These set of values, x̄, ȳ,

and z̄, are collectively called a critical point and correspond to the steady state values

of velocity and temperature Fourier sin and cosine coefficients. In the present case, two

critical points, P1 and P2, can be found by setting the three governing equations to zero

to solving for x̄, ȳ, z̄.

0 = −x̄+ ȳ cosα− z̄ sinα, (3.1)

0 = −x̄z̄, (3.2)

0 = −Q+ x̄ȳ. (3.3)

Eq. (3.2) shows either x̄ or z̄ must be equal to 0. If x̄ equals zero, there is no fluid

velocity and the entire system comes to rest. That does not provide a solution, so z̄ must

equal 0. From here, a simple two variable system of equations can be solved.

0 = −x̄+ ȳ cosα, (3.4)

0 = −Q+ x̄ȳ. (3.5)

Rearranging Eq. (3.5) to isolate ȳ and substituting it into Eq. (3.4) results in the

following:

0 = −x̄+

(
Q

x̄

)
cosα, (3.6)

x̄ = ±
√
Q cosα. (3.7)
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Substituting x̄ back into Eq. (3.4),

0 = −(±
√
Q cosα) + ȳ cosα (3.8)

ȳ = ±
√
Q/ cosα (3.9)

Solving for x̄ and ȳ provided both a positive and negative set of solutions. These make

up the two critical points, or steady state solutions as noted below with P1 and P2.

P1 = (x, y, z) = (
√
Q cosα,

√
Q/ cosα, 0), (3.10)

P2 = (x, y, z) = (−
√
Q cosα,−

√
Q/ cosα, 0), (3.11)

where both exist if −90◦ < α < 90◦. P1 corresponds to a steady state flow in the

counterclockwise direction, whereas P2 refers to a flow in the clockwise direction. Next,

the steady state solutions will be used in the linear stability analysis.

3.3 Linear Stability Analysis

A linear stability analysis on this toroidal thermosyphon with known heat flux was per-

formed by Pacheco-Vega et. al [10]. In their work, a linear stability curve graph was

developed that accurately predicted what type of behavior would result for any given

heat input and tilt angle combination. This analysis is outlined below.

A linear stability analysis using the critical points can be performed, starting with
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the following equations:

x(t) = x̄+ x′eλt, (3.12)

y(t) = ȳ + y′eλt, (3.13)

z(t) = z̄ + z′eλt, (3.14)

with x(t), y(t), z(t) as the dimensionless variables, x̄, ȳ, z̄ as the steady state solutions, and

x′eλt, y′eλt, z′eλt as the perturbations in the system. As described in Sen et. al [28], these

perturbations have an amplitude of x′, y′, z′ and will either grow and decay depending

on the value for λ, particularly if it is positive or negative. Further, the stability of the

system will depend on if the lambda values are real, imaginary, or a combination of the

two as is solved during this section. Taking the derivative of both sides provides the next

set of equations,

dx

dt
= λx′eλt, (3.15)

dy

dt
= λy′eλt, (3.16)

dz

dt
= λz′eλt. (3.17)

The above equations for x, y, z and dx/dt, dy/dt, dz/dt can be substituted in to the three

governing Eq’s, (3.34 - 3.36), shown below:
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λx′eλt = −[x̄+ x′eλt] + [ȳ + y′eλt] cosα− [z̄ + z′eλt] sinα, (3.18)

λy′eλt = −[x̄+ x′eλt][z̄ + z′eλt], (3.19)

λz′eλt = −Q+ [x̄+ x′eλt][ȳ + y′eλt]. (3.20)

Note this is a linear analysis and any nonlinear terms will be neglected. For example,

the multiplication of x′y′ will result in an infinitesimally small nonlinear terms so it will

be neglected in this analysis. After mathematical reductions, these equations simplify to

the following:

−(λ+ 1)x′ + (cosα)y′ + (− sinα)z′ = 0, (3.21)

(z̄)x′ + (−λ)y′ + (−x̄)z′ = 0, (3.22)

(ȳ)x′ + (x̄)y′ + (−λ)z′ = 0. (3.23)

These equation can now be put into matrices to combine the eigenvalues λ,


−(λ+ 1) cosα − sinα

z̄ −λ −x̄

ȳ x̄ −λ




x′

y′

z′

 =


0

0

0

 ,

where the determinant of the matrix must equal zero and results in the following
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polynomial,

λ3 + λ2 + λ

(
Q cosα +

√
Q

cosα
sinα

)
+ 2Q cosα = 0. (3.24)

This third order polynomial will produce three roots including the real part which can

be positive, zero, or negative. A positive real root will produce an unstable oscillator and

cause the system to be unstable. A zero root will produce an undampened oscillator,

causing the system to remain in a repeating cycle. A negative root will produce a

dampened oscillator and will reach a stable condition. Consider using synthetic division

on this polynomial to get a root of −1. To get an exact root, the last term in the division

slot must equal 0, shown below,

2Q cosα−Q cosα−
√

Q

cosα
= 0, (3.25)

Q =
sin2 α

cos3 α
. (3.26)

This means for the initial eigenvalue polynomial to have a root of −1, the above must

be true. The remainder polynomial can be solved as follows:

λ2 +Q cosα +

√
Q

cosα
sinα = 0, (3.27)

λ = ±
√

2Q cosα i. (3.28)

This provides three eigenvalues: (−1, +
√

2Q cosα i, −
√

2Q cosα i). Next, the Routh-

Hurwitz Stability Criterion (RHSC), as covered by K. Ogata [29], can be applied to check

for unstable roots and evaluate stability in a control system. A detailed description can
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Table 3.1: Routh-Hurwitz stabilization criterion table.

Eigenvalues Column 1 Column 2 Column 3

λ3 1 Q cosα +
√

Q
cosα

sinα 0

λ2 1 2Q cosα 0

λ1
√

Q
cosα

sinα−Q cosα 0 0

λ0 2Q cosα 0 0

be found in Appendix B, below is a summary applicable to the current study. First,

the coefficients, a1, a2, a3, are identified from the polynomial. Then, according to the

RHSC, the rest of the coefficients are calculated. For this case those are b1, b2, c1. These

coefficients are then arranged into a table as shown below:

If the coefficients in column 1 of Table 3.1 are all positive, the system can be considered

stable. This provides two conditions that must be considered. The first conditions is

shown below:

√
Q

cosα
sinα−Q cosα ≥ 0, (3.29)

Q ≤ sin2 α

cos3 α
, (3.30)

followed by the second condition:

2Q cosα ≥ 0, (3.31)

cosα ≥ 0, (3.32)

−90◦ ≥ α ≥ 90◦. (3.33)

A final test is to determine if the system is dissipative, meaning, the right-hand side of
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the governing equations diverge to −1. This is done by using the nabla operator on the

governing equations as shown below:

dx

dt
= −x+ y cosα− z sinα, (3.34)

dy

dt
= −xz, (3.35)

dz

dt
= −Q+ xy. (3.36)

These equations are then put into the form of ẋ = Ax+ b,


ẋ

ẏ

ż

 =


−1 cosα − sinα

0 0 −x

0 x o




x

y

z

+


0

0

−Q

 .

The nabla operator is then used on the system to determine if the system diverges,

∇ · (Ax+ b) =

[
∂
∂x

∂
∂y

∂
∂z

]

−x+ y cosα− z sinα

−xz

−Q+ xy

 .

Expanding the equation results in the following:

∇ · (Ax+ b) =
∂

∂x
(−x+ y cosα− z sinα) +

∂

∂y
(−xz) +

∂

∂z
(−Q+ xy) (3.37)

∇ · (Ax+ b) = −1 (3.38)

In agreement with Sen et al. [28] who analyzed the same system, the negative value (−1)
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indicates the system is dissipative. This means any initial volume will shrink. If the right

hand side contained a positive value, the system will increase exponentially and blow up.

If the value is zero, there is neither an increase or decrease, the system remains the same

as we see in mass conservation. The analysis conducted in this section produces a linear

stability curve graph that can predict the stability of this system.

Consider the range 0 < α < 90◦, P1 is stable while Q 6 sin2 α/ cos3 α [10]. This

linear stability curve is shown below in Figure 3.1 and shows the relationship between

fluid flow stability, heat input, and tilt angle variables which provides the foundation for

developing a control strategy. This behavior will be discussed in the next section.

Figure 3.1: Linear stability curve.
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3.4 Stable, Oscillatory, and Chaos Dynamics

In the previous section, criteria for system stability were established along with a graph

that connected system inputs, α and Q, to stability behavior. Consider the range 0 <

α < 90◦ which contains the positive critical point P1 and the initial values of 0 for x, y, z.

Three distinct behaviors can be observed: stable, oscillatory and chaotic.

For Q < sin2 α/ cos3 α, the real eigenvalue root is negative and the critical point P1

is stable. Figure 3.2 shows the x, y, z values as they all stabilize with values of Q = 5

and α = 60◦. In Figure 3.2(a) the red arrow and circle indicate time step zero and the

direction it initially moves in. In Figure 3.2(b), the time steps have been truncated to

show the stable region, however, the x value continues to decrease so any range of time

steps will produce the same view.

For Q = sin2 α/ cos3 α, the real eigenvalue root is zero and the critical point P1 is

neutrally stable. Figure 3.3 shows the x, y, z values as they begin to oscillate. They will

not stabilize to a constant value, but will remain oscillatory within a fixed range at the

neutral stability curve with values of Q = 5 and α = 58◦. In Figure 3.3(a) the red arrow

and circle indicate time step zero and the direction it initially moves in. In Figure 3.2(b),

the time steps have been truncated to only show region where the oscillations remain

constant. The constant oscillations at a constant range are apparent as the shape repeats

itself within 3 square units.

A combination of oscillatory and chaotic behavior can be observed when the value

of α is chosen close to the stability line, α = 50◦ for example. By definition it has a

positive eigenvalue root so it should display chaotic behavior, however, it displays limit
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(a) Phase space x vs. y vs. z. (b) x - z plane with truncated time steps.

(c) Time-dependent solution for x, y, and z with detailed inset view.

Figure 3.2: Stable behavior for Q = 5, α = 60◦.

cycle behavior. Figure 3.4 shows the x, y, z values as they cycle within a certain range.

They will not stabilize to a constant value, but will remain in limit cycles indefinitely

with values of Q = 5 and α = 50◦. Further, note the behavior does not decrease to

the given cycle as observed in α = 58, but rather increases. This was also observed in

the research done by Sen at al. [28]. In Figure 3.4(a) the red arrow and circle indicate

time step zero and the direction it initially moves in. In Figure 3.4(b), the time steps

have been truncated to only show region where the oscillations remain constant. The
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(a) Phase space x vs. y vs. z. (b) x - z plane with truncated time steps.

(c) Time-dependent solution for x, y, and z with detailed inset view.

Figure 3.3: Oscillatory behavior at the neutral stability curve for Q = 5, α = 58◦.

oscillations within a constant range are apparent as the shape repeats itself, however,

different from the previous examples this shape has expanded into 72 square units.

For Q > sin2 α/ cos3 α, the real eigenvalue root is positive and the critical point P1

is unstable. Figure 3.3 shows the x, y, z values as they do not stabilize to any value nor

show any repetitive motion with values of Q = 5 and α = 30◦. In Figures 3.5(a) and

3.5(b), two distinct attractor points can be observed that the system orbits around.

In the next chapter, a review of fuzzy logic will be covered to explain how a controller
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(a) Phase space x vs. y vs. z. (b) x - z plane with truncated time steps.

(c) Time-dependent solution for x, y, and z with detailed inset view.

Figure 3.4: Limit cycle behavior with chaos parameters for Q = 5, α = 50◦.

can maintain stability in this system.
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(a) Phase space x vs. y vs. z. (b) x - z plane with truncated time steps.

(c) Time-dependent solution for x, y, and z with detailed inset view.

Figure 3.5: Chaos behavior for Q = 5, α = 30◦.
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CHAPTER 4

Introduction to Fuzzy Logic

The previous chapter described the dynamics of the heat convection loop as well as the key

inputs and outputs that define its behavior. This chapter will focus on the background

and concepts of fuzzy logic; the means by which the dynamic system will be controlled.

Fuzzy logic (FL) is an if-then rule based method that uses non-rigid linguistic variables

to describe an imprecise system [11]. Fuzzy logic has been used in many engineering

applications including heat transfer and building temperature control systems [30]. This

chapter will include an introduction of fuzzy logic, its application, membership functions

and their relevance to fuzzy sets, fuzzy inference systems, fuzzy rules, and defuzzification.

To conclude, a summary will be provided that ties all of the key concepts together to

prepare the reader for controller development in the following chapter.

4.1 Background on Fuzzy Logic

In 1965 Lotfi Zadeh introduced the idea of fuzzy sets and challenged traditional binary

logic [16, 17]. Traditional controllers are able to provide a high level of precision in com-

plex problems, however, the higher the complexity and precision the higher the cost of

time and/or resources. Furthermore, a problem may be too complex or not understood

well enough that a precise controller may not be a viable option [16]. Fuzzy logic intro-

duces a solution to control a problem that does not require a high level of precision or if

the problem itself is not well understood [16]. It takes advantage of the use of linguistic

variables, such as “young” and “old”, that can build logic based on human intuition.

Fuzzy logic uses imprecise terms to describe a system. A good example is how we use
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age to determine if someone is young or old? Let’s take a general age range of 0 to 80,

and say the 40 years old is where we draw the line between young and old. Binary logic

would tell us someone is fully in the young category until moments before turning 40,

then immediately fully belongs to the old category the next day. So, if a person is 39

years, 11 months, 29 days, they are still in the young category, then the next day they

will belong to the old category. Not a very smooth transition and it doesn’t seem like

that’s how it happens. Fuzzy logic can define that someone belongs to the fully young

group from 0-20, and belongs to the fully old group from 60-80. In between those ages,

a person can belong to both groups in varying degrees. Let’s look at the age of 30; you

belong more in the young category, but you also belong a little to the old category, or at

least more than someone who is 20. This provides a transition from the young category

to the old category instead of a complete switch from one day to another. This also feels

more intuitive about how someone goes from being young to being old.

This highlights the concept of something not fully belonging to one group or another,

but somewhere in between. Fuzzy logic can primarily be useful in two scenarios: where

a cause-and-effect system can be observed but not completely understood, and where

quickness takes priority over precision [16].

In a fuzzy logic control system, an input signal must be received and assigned to a

set based on defined membership functions (fuzzification), put through a fuzzy inference

system, then converted into an output signal (defuzzification) and delivered to the plant

model. In this study, the Mamdani inference method will be used as it is the most

common but there are others that have been developed such as the Sugeno and Tsukamoto

methods [16].
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Figure 4.1: Universe X, set A, and elements x1 and x2.

4.1.1 Crisp Sets, Fuzzy Sets and Membership Functions

Fuzzy sets can be best described by first looking at crisp sets. Let us consider a given

Universe X, which contains elements x1 and x2. These elements can either belong or

not belong to any given crisp set. In other words, a set is a clearly defined collection of

elements. This is illustrated in Figure 4.1 with universe X, element x1 that belongs to

set A, and element x2 that does not.

A crisp membership function, µ(x), determines if an element belongs to a set. Eq.

(4.1) shows a crisp membership function µA that maps an element xi to set A. If x

belongs to set A, then µ(x) = 1. If not, µ(x) = 0.

µA(x) =


0, x /∈ A

1, x ∈ A
(4.1)

In fuzzy sets, elements can belong to single or multiple sets and in varying degrees,

depending on how the membership function is defined. A fuzzy membership function µA˜
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can have a value from 0 to 1, notated as

µA˜(x) =∈ [0, 1]. (4.2)

Note fuzzy sets will be marked with a tilde underscore. Fuzzy sets that contain multiple

elements in varying degree of memberships can be defined specifically as

A˜(x) =

{∑
i

µA˜(xi)

xi

}
, (4.3)

where the numerator is the membership function that maps its element to the correct

set, and the denominator is the element.

Fuzzy memberships can have a variety of profiles; three commonly used ones are

Trapezoid, Triangle, and Gaussian. The best function to use depends on the application,

there is not one that is better or worse to use than the other. It is important to eval-

uate the different membership functions to determine which one works best for a given

application. They notation and graphs are located below:

Triangular membership function

f(x; a, b,m) =



0, x ≤ a

x−a
m−a , a < x ≤ m

b−x
b−m , m < x < b

0, x ≥ b

(4.4)
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Trapezoidal membership function

f(x; a, b, c, d) =



0, x ≤ a

x−a
b−a , a ≤ x ≤ b

1, b ≤ x ≤ c

d−x
d−c , c ≤ x ≤ d

0, x ≤ d

(4.5)

Gaussian membership function

f(x; a, c, σ) = e
−(x−c)2

2σ2
st (4.6)

The key parameters of the triangular function are its lower bounds, a and b, and its

center m. The trapezoid has a and d as its lower bounds, and b and c as its upper

bounds. The Gaussian has its center c, and standard deviation σ. These membership

functions are what make a crisp value input signal into a fuzzy value: the definition of

fuzzification. After fuzzification, the values will go through the inference engine which

uses a rule base to output another fuzzy value. It will then go through defuzzification

which will take that fuzzy value and convert it back into a crisp value output signal for

the fuzzy logic controller. This process is illustrated in Fig. 4.3.

Fuzzy set operations are similar to those of crisp sets and use the standard union,

intersection, and compliment logic operators described in Figure 4.4 and Eqs. (4.7)-(4.9)

for both crisp and fuzzy sets:
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(a) Triangle membership function. (b) Trapezoid membership function.

(c) Gaussian membership function.

Figure 4.2: Common types of membership functions.
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Figure 4.3: Fuzzy logic inference engine diagram.

Figure 4.4: Logic operators; union, intersection, and complement.

Complement; Ā˜ = {x|x 6∈ A˜ , x ∈ X} (4.7)

Union; A˜ ∪B˜ = {x|x ∈ A˜ or x ∈ B˜} (4.8)

Intersection; A˜ ∩B˜ = {x|x ∈ A˜ and x ∈ B˜} (4.9)

The next section will cover the inference engine and knowledge base in more detail.
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4.1.2 Inference Systems and Knowledge Base

There are several inference methods such as the Mamdami systems, Sugeno models, and

Tsukamoto models [16]. This research will used the Mamdami method as it is the most

common in practice [16]. This inference method defines antecedents (inference inputs),

applies if-then rules based on logical operators built from a knowledge base, and produces

consequents (inference outputs). In other words it takes a set or sets of fuzzy values from

fuzzification, transforms them using linguistic variables based on established rules, then

produces another fuzzy set to be defuzzified in the next step.

To explain this inference system, consider a two-valve shower that provides water

temperature from 60◦F to 120◦F. From experience (the knowledge base in this example),

one can conclude the water will come out cold, warm, or hot. With the cold water valve

completely open, the temperature of the water can be controlled by opening or closing the

hot water valve. These linguistic variables and thier corresponding membership functions

are mapped out in Figure 4.5. Consider two temperatures values shown in the figure:

70◦F (green line) and 80◦F (purple line) and assume the desired temperature is 90◦F. If

the water comes out at 70◦F, it will map to only one set, “cold”, with a µ value of 1.0.

At this temperature, one may want to open the hot water valve fully open to achieve the

desired 90◦F. However, if the water comes out at 80◦F, this maps to two sets, cold and

warm, with µ values of 0.7 and 0.3 respectively. At this temperature, one may not want

to open the hot water valve all the way, but likely more open than closed to still increase

the water temperature. These two examples show the sliding scale of values and decisions

that can be made by the Mandami inference engine. These rules can be mapped out in a
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Figure 4.5: Example of membership functions for cold, warm, and hot water.

Table 4.1: General example of a truth table.

z x1 x2
y1 z1 z2
y2 z3 z4

truth table for more complex systems, a general example is shown in Table 4.1 for inputs

x and y, with output z. This table shows two input variables, x and y, which two each

fuzzy sets x1, x2, y1, y2, that can be joined by the logic operators previously discussed:

and, or. The inference engine determines the strength of each rule and applies it. For

example an IF-THEN rule can be as follows: IF an input element (antecedant) belongs

to set x1 AND y2 THEN the output element (consequent) belongs to set z3.

After going through the inference engine, the fuzzy values must be converted back

into crisp values through the defuzzification process described in more details in the next
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section.

4.1.3 Defuzzification

Input values that have gone through membership functions, assigned to sets, and put

through an inference system need one more step before becoming output values. Defuzzi-

fication is the last step in this process. Common methods include “max membership”,

“centroid”, and “weighted”. [16]. The max membership method uses the single peak

of the membership functions to determine the z output. The centroid method treats

the membership functions as areas and calculates the centroid of the combined shape to

determine the z output. The weighted average method takes the average of each member-

ship function, then averages that to determine the z output. These methods are defined

mathematically below:

Max membership principle

µc(z
∗) ≥ µc(z), for all z ∈ Z (4.10)

Centroid method

z∗ =

∫
µc(z) · zdz∫
µc(z)dz

(4.11)

Weighted average

z∗ =

∑
µc(z̄) · z̄∑
µc(z̄)

(4.12)
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The centroid method is the most prevalent method which will be used in this research

[16]. An example of the Mamdani inference method and a centroid defuzzification method

is shown in Figure 4.6. Note the input signal is 80◦F. The input membership functions

Figure 4.6: Mamdani inference method and centroid deffuzzification method.

turn that crisp value into a set of fuzzy values. The inference engine then maps the three

input and output membership functions, to produce a set of output fuzzy variables. The

centroid method then turns that fuzzy set back into a crisp value to send along to the

plant model. Now, a logical check can be discussed. This is taken from the earlier

example: the desired temperature is 90◦F so if the temperature is 80◦F, one may open

the valve not fully, but partially and more open than closed. The valve position of 0.639

reflects that as it is closer to 1.0, or fully open, and is expected to increase the water

temperature.

To summarize, a fuzzy logic controller using the Mamdani inference engine performs
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the following steps:

� Establish the fuzzy rules and input/output membership functions from a knowledge

base

� Use the membership functions to convert the crisp values into fuzzy values

� Determine rule strength from fuzzy inputs (antecedants) to apply to output mem-

bership functions

� Sum up the output fuzzy values (consenquents) to deffuzify into crisp output values

The next chapter will use the background and examples provided in this chapter to

describe how the controllers were built and implemented for the current research.
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CHAPTER 5

System and Stability Analysis

In the previous chapter, fuzzy logic background and controller design concepts were dis-

cussed. This chapter will discuss the development, design, and implementation of three

fuzzy logic controllers, each one using more information than the one before it. First, a

stable system without a controller will be analyzed to develop a baseline for comparison

to a controlled system. Then, each controller design will be discussed. Lastly, the con-

troller’s ability to stabilize the system will be evaluated in three difference applications:

1) evaluate controller functionality by holding heat input steady at Q = 5 and controlling

the tilt angle with an intial value of α=30◦, 2) evaluate disturbance rejection by changing

values of Q in different incremements while still using α to control the system, and 3)

evaluate disturbance rejection using the previous method but as Q changes, so does the

setpoint for x.

5.1 System Behavior without a Controller

Numerical simulations were ran in MatLab using a custom 4th order Runge-Kutta code

to solve the governing system of ODEs given in Eqs.(3.34)–(3.36) (provided in Appendix

C). As covered in Chapter 3, the system can behave in a stable, oscillatory, or in a chaotic

manner. The numerical simulation results provide the ability to predict what behavior

will result from various combinations of inputs for the controller. Given a value of the

heat input valule Q = 5 and values of α = 60◦, 58◦, and 30◦, Table 5.1 highlights the

qualitative and quantitiative flow characterstics. Maximum amplitude is the maximum

value of x at any point during the simulation. Stabilization value is the x value after
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Table 5.1: Quantitative measures of the dynamic behavior for the fluid velocity, x.

Input values Dynamic Maximum Stabilization Stability
behavior amplitude value amplitude

Q = 5, α = 60 Stable 1.68 1.58 0
Q = 5, α = 58 Oscillatory 1.72 n/a n/a
Q = 5, α = 30 Chaotic 6.48 n/a n/a

(a) Stable system for Q = 5 and α = 60◦.

(b) Chaotic system for Q = 5 and α = 30◦.

Figure 5.1: Baseline system behavior without a controller.

the system has stabilized, if applicable. Stability amplitude is the x value at which the

system stabilizes to, if applicable. Figure 5.1 highlights these characteristics. From

these simulations, it was observed that for Q = 5 and α = 60 the x values will stabilize

to 1.549 (which matches its steady state value P1) with a maximum amplitude of 0;

complete stability. This is a critical parameter to evaluate stability discussed later in

this section. The oscillatory and chaotic systems do not stabilize as observed earlier in

Chapter 3.
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It is to note that the three dependent variables, the nondimensional velocity, and the

two Fourier coefficients of fluid temperature, x(t), y(t) and z(t), are interconnected by

the physics of the process of heat transfer by convection. Therefore, the three variables

will not seperate into different behaviors; if one is stable then the others will also be.

From this fact, only x will be used to determine how much the tilt angle α, would need

to be changed. The error value ∆x, will dictate the how much ∆α will change until the

system stabilizes. The next section will cover controller development.

5.2 Fuzzy Logic Controller Development and Strategy

To develop a fuzzy logic controller, one must determine the range of input values, the

type of membership functions (MF), the type of inference system, and expected output

values. There are many different ways to implement these desicions into a contoller

and they can be derived from intution, algorithms, or logical operations [16]. Intuition

relies on previous experience from the user to determine what range of output should be

expected from what range of input and is the method chosen for this study.

The objective of these controllers are to maintain the fluid flow setpoint inside the

thermosyphon device while, at the same time, maintaining its stability. This is done by

controlling the value of nondimensional velocity x, by adjusting the tilt angle α, in a

closed feedback loop. The initial setpoint was 1.549 as determined by the simulations

performed in the previous section. As an example: if x was higher or lower than the

setpoint, the system was not stable and the tilt angle ∆α needed to be increased. If

x = 0, the system was stable and had the capacity for the flow to be increased slightly

to match the possible change in the heat flux Q.
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(a) Feedback loop using one input and one output.

(b) Feedback loop using two inputs and one output.

(c) Feedback loop using three inputs and one output.

Figure 5.2: Feedback loops with different number of inputs.

Three types of controllers have been developed: Fuzzy Logic Controller (FLC) 1,

FLC 2, and FLC 3. These first uses the error (E∆x), which is the difference of x and

the setpoint (xref ), as the single controller input, the second adds the derivative of the

error(dE∆x/dt) as the second input, and the third adds the integral of the error (
∫
E∆xdx)

as the third input. A schematic of each are shown in Figure 5.2.

The feedback loop starts with the setpoint, or reference, value which is the desired

output value of the system. It then goes to the summation block which compares the

incoming signal to the reference value, and in this case they are one in the same so the

error signal is zero. Next, the controller takes that input value of zero and determines

55



an output value. In this case the input value is x, and the output value is the change

in α. The α value is then fed into the plant, which contains the dynamic system. In

experiemntal systems this is the test bed that produces signals from various instruments.

This system is a simulated test bed so the governing system of equations produce the

output signals. In the Simulink model, the three governing equations were solved using

the built-in Runge-Kutta Fourth-order solver with a time step of 0.1. These simulations

were ran using a 0.01 time step as well, but the results were the same. To reduce time,

0.1 was the chosen time step. Also, since this is a simulated system, an intial value can

be assigned, α = 30◦ in this case. These output signals are whats recorded in the data

loggers, and set back around to the summation block. The summation block compares

the output signal x from the plant to the reference value. That difference is called the

error (E∆x), which is again fed into the controller. This cycle repeats for the set amount

of time steps. The fuzzy logic control paramters for each will be covered in the next

sections.

5.2.1 Fuzzy Logic Controller 1

This fuzzy logic controller (FLC) uses a single-input single-output method for stability

control, shown in Figure 5.3(a). The input is the difference value between x and xref

as the error signal and the output is the change in α. Figures 5.3(b)-5.3(c) show the

membership functions of the input and output values, x and ∆α. Figure 5.3(d) shows

the response line of the controller which provides a visual representation of how the error

signal dictates the change in α. For example if the error signal is approximately from

-0.25 to 0.25, the controller will lower the value of alpha; if the error signal is outside of
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that range it will increase the value of alpha. Shown in Table 5.2 are the lingustic set of

rules that have been developed.

Table 5.2: Decision table for tilt angle andjustment, FLC 1.

E∆x ∆α◦

Negative large (NL) Increase large (IL)
Negative small (NS) Increase small (IS)

Zero (Z) Decrease small (DS)
Positive small (PS) Increase small (IS)
Positive large(PL) Increase large (IL)

To control the thermosyphon system, a feedback loop – shown in Figure 5.4 – was

designed to test the ability of the fuzzy controller to manipulate the tilt angle to maintain

stability of the system; i.e., x, y and z. The figure shows that the plant contains a

Simulink block diagram that solves the system of non-linear ODEs [Eqs.(3.34)–(3.36)].

The initial reference for x is set to 1.549, which is perfect stability. A random value signal

generator with an adjustable maximum amplitude can be used to induce perturbations

in the x-value, simulating experimental data to test the controller. The cumulative block

maintains the tilt angle value so a change in tilt angle can be added or subtracted after

every time step. It can also set limts for maximum or minimum values of the tilt angle

α. To maintain an optimized value of x, the tilt angle was initially constrained to a

maximum value of α = 75◦. The cumulative block also allows for initial values of α to be

set. These conditions are used to determine if, when provided a value that should result

in unstable behavior, the system can be stabilized.

After several design iteration for this controller, a setpoint of 1.591 was assigned. This

value will remain constant moving forward as well as the membership function ranges
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(a) FLC 1 using one input and one output.

(b) Membership functions for E∆x .

(c) Membership functions for ∆α (◦).

(d) Response line of FLC 1.

Figure 5.3: FLC 1 design parameters.
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Figure 5.4: Feedback loop for the FLC 1.

for E∆x and ∆α. Additional iterations of this feedback loop and fuzzy logic controllers,

were designed to include not only the signal error E∆x, but the rate of change and the

integration of it as well. The more information that is fed into the controller, the better

it is expected to perform. These designs are covered in the next two sections.

5.2.2 Fuzzy Logic Controller 2

This controller uses a double-input single-output method for stability control, shown in

Figure 5.5(a). The two inputs used are E∆x and the change in E∆x, and the output is

the change in α. Figures 5.5(b) show the membership function of the additional input;

negative (N), zero (Z), and positive (P). Figure 5.5(c) shows the response plot of the

controller which provides a visual representation of how the two input values dictates the

change in α. Shown in Table 5.3 are the lingustic set of rules that have been constructed.

The rules can be read by taking an E∆x MF value from any column, taking a dE∆x/dt

MF value from any row, and finding the ∆α value at thier intersection. For example: if

E∆x is NS and dE∆x/dt is N, then ∆α◦ is IS. Values of NL and PL for E∆x do not have
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(a) FLC 2 using two inputs and one output.

(b) Additional membership functions for change of E∆x .

(c) Response surface for FLC 2.

Figure 5.5: FLC 2 design parameters.

corresponding dE∆x/dt values, either one will result in an increase large (IL) change in

the angle α.

A second feedback loop – shown in Figure 5.6 – was designed to include the second

input value dE∆x/dt. Aside from the additional input, the model remains the same.

The next iteration of this feedback loop and fuzzy logic controller is covered in the

next section.
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Table 5.3: Decision table for tilt angle andjustment, FLC 2.

∆α◦
E∆x

NS Z PS

dE∆x

dt

N IS NC IS
Z NC DS NC
P IS NC IS

Figure 5.6: Feedback loop for the FLC 2.

5.2.3 Fuzzy Logic Controller 3

This controller uses a triple-input single-output method for stability control, shown in

Figure 5.7(a). The three inputs used are E∆x, the change E∆x, and the integral of E∆x,

while the output is the change in α. Figures 5.7(b) shows the membership functions

of the additional input value; AN is any negative value and AP is any positive value.

Figures 5.7(c)-5.7(d) shows the response plots of the controller which provides a visual

representation of how the three input values dictates the change in α. Shown in Table 5.3

are the lingustic set of rules that have been constructed.

A third feedback loop – shown in figure 5.8 – was designed to test and evaluate the

ability of this controller with the additional input
∫
E∆xdx.

The next section will cover the results using all three FL controllers, evaluated against
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(a) FLC 3 using three inputs and one output.

(b) Additional membership function for the integral of E∆x

.

(c) First response surface for FLC 3.

(d) Second response surface for FLC 3.

Figure 5.7: FLC 3 design parameters.
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Table 5.4: Decision table for tilt angle andjustment, FLC 3.

E∆x = NS E∆x = Z E∆x = PS

∆α◦
∫
E∆xdx ∆α◦

∫
E∆xdx ∆α◦

∫
E∆xdx

AN AP AN AP AN AP

dE∆x

dt

N IL IS
dE∆x

dt

N IS NC
dE∆x

dt

N IS IL
Z IS NC Z DS DS Z NC IS
P IL IS P NC IS P IS IL

Figure 5.8: Feedback loop for the FLC 3.

the baseline performance.

5.3 Stability Results

The dynamic model is a function of heat input, Q, and tilt angle, α. These two parameters

control the x, y, and z output, which initially start at zero. The FL controllers aim to

control the x output, which will increase or decrease E∆x by adjusting α and holding Q

stable. Various initial values of α and x setpoints were tested. As shown in Figure 3.1,

a heat input value of Q = 5 and tilt angles α of 60◦, 58◦, and 30◦ should produce –

respectively – stable, oscillatory, and chaotic beahavior. The next three sections will

cover controller functionality, controller disturbance rejection, and additional controller

behavior observations.
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5.3.1 Controller Functionality

First, FLC 1 is used to stabilize the system under three initial α values as shown in

Figures 5.3. These values were chosen to initially induce stable, oscillatory, and chatoic

behaviors to evaluate controller functionality. The first figure, Fig. 5.9(a), shows an intial

stable condition, the second figure, Fig. 5.9(b), shows an intial oscillation condition, and

Fig. 5.9(c), shows an initial chaotic condition. The initial chaotic condition highlights

the performance of the controller. Initially, the x values is chaotic becuase it starts in the

unstable reigon. As the controller increases α, the system slowly begins to stabilize until

it crosses over into the stable reigon and the error is minimal. The goal, however, is not

to stay in the stable reigon; rather to maintain the set xref value. The controller then

decreases α to bring the system into the unstable reigon while maintaining a stable x

values. Once the system begins to destabilize, the controller once again corrects itself to

stabilize the system and the cycle continues. All three simulations show the robustness

of the fuzzy controller to maintain stability for any inital value of α. Note that after the

intitial stabilizationm the characteristics of all three simulations are the same, parameters

will be marked up for reference on Figure 5.9(c). As mentinoed previously, to control

the fluid velocity x is to control the fluid temperature componenets y and z as shown in

Figure 5.10.

Additionally, results were collected and analyzed for FL controllers 2 and 3. Table

5.5 below summarizes these results, and a visual comparison is provided in Figure 5.11

for an initial α value of 30◦. The third column, time steps between stability cycles, refers

to the time steps between the maximum values during adjacent period of instability.
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(a) Initial condition: α = 60◦.

(b) Initial condition: α = 58◦.

(c) Initial condition: α = 30◦.

Figure 5.9: Thermal stability results of FLC 1.
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Figure 5.10: Stability correlation between x, y, and z.

Table 5.5: Stability results for different FL controller configurations.

Controller Initial α◦ Time steps Max ∆x, Min ∆x, Max/min
type value destabilize stabilize α◦

FLC 1 30 89.0 2.68 0.20 64.2 / 51.0
FLC 2 30 105.2 2.54 0.08 66.4 / 48.7
FLC 3 30 148.6 2.49 0.03 67.4 / 48.4

Maximum ∆x in the fourth column refers to the maximum difference between x values

when the system began to destabilize. Minimum ∆x in the fifth colum refers to the

minimum difference between x values during periods of stability. The last colum shows

the maximum and minimum α values to reference the stable and unstable reigons in the

stability chart.

These results shown the ability of the FL controller to stabilize a system under oth-

erwise unstable conditions. As expected, the more information that is fed into the con-

troller, the better it performs. With each iteration of controller, the periods between
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(a) FLC 1, initial condition: α = 30◦.

(b) FLC 2, initial condition: α = 30◦.

(c) FLC 3, initial condition: α = 30◦.

Figure 5.11: Thermal stability comparison for FLC 1, FLC2, and FLC 3.
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Figure 5.12: Controlled system behavior on the stability graph.

instability increased and the difference in x value during stability decreased.

It is helpful to relate system behavior to the stability graph and the xref value to its

critical points (steady state values). For a value of Q = 5 the stability point is 58.3◦;

any angle below that will become unstable and any value above that will become stable.

Figure 5.12 below shows the behavior of FLC 3 on the stability graph as it goes between

stability reigons. Next, recall that the critical point, P1, for x is a function of Q and α.

At Q = 5 and α = 58.3◦, P1 is 1.62. With xref set at 1.59, it is below the steady state

value and will induce instability, forcing the controller to cycle in and out of the stability

reigon. This will be explored more in the next section where disturbance rejection is

evaluated in FLC 3 by changing the input Q at different intervals.
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Figure 5.13: Critical points x̄ as a function of Q and α.

5.3.2 Disturbance Rejection Method 1

The stability graph in Figure 5.12 provides valuable insight on relationship between Q,

α, and stability, but does not provide information on critical points. Recall from Section

3.2 the steady state values, x̄, ȳ, z̄, are collectively called critical points (P1). Figure 5.13

shows the relationship between Q, α and x̄.

For each value of Q and α exists a steady state value x̄. Certain steady state values

exist at the neutral curve where if the system velocity x is above or below that value the

system will stabilize and slow down or destabilize and speed up respectively. Note that

as Q increases for any given α, so does the steady state value as summarized in Table 5.6.

This is key because if the controller has a fixed xref and the Q input changes, so does

the stability dynamics. This is important to evaluate disturbance rejection as discussed

next.
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Table 5.6: Corresponding values of Q, α, and x̄.

Values at neutral curve

Q values α◦ x̄
Q = 3 53.3 1.34
Q = 4 56.2 1.49
Q = 5 58.3 1.62
Q = 6 60.0 1.73
Q = 7 61.4 1.83

Figure 5.14: Disturbance rejection results with a change of Q from 5 to 3.

The next series of tests will evaluate the controllers functionality for various changes

of Q. Figure 5.14 shows a change in Q from 5 to 3 at 300 time steps into the simulation.

With an initial tilt angle of α = 30◦ and Q = 5, the controller increases α to stabilize

the system and produce a stable x value. However, the setpoint (xref = 1.59) is below

the critial point (P1 = 1.62), in the unstable reigon, so eventually the system begins to

destabilize and speed up. The controller then raises α to slow down and stabilize the

system as it begins to repeat. At 300 time steps Q changes from 5 to 3 and the critical

70



Figure 5.15: Disturbance rejection results with a change of Q from 5 to 4.

point P1 changes from 1.62 to 1.34. The setpoint is now above the critical point, in the

stable region. As the controller brings the system to the setpoint, the system no longer

become unstable; rather it begins to slow down. That combination ultimately casues the

system to freeze as x approaches 0 near the end of the siulation.

Next, the system will change Q from 5 to 4 as shown in Figure 5.15. The graph

shows normal operation as previously discussed up to 300 time steps. Q then changes

from 5 to 4 and the critical point P1 changes from 1.62 to 1.49. The setpoint is again

above the critical point, in the stable reigon. As the controller brings the system to the

setpoint, the system no longer become unstable; rather it begins to slow down. Since the

new critical point is closer to the setpoint than the last example it takes longer and even

enters another cycle, but ultimately that combination again casues the system to slow

down as x approaches 0 near the end of the simulation.
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Figure 5.16: Disturbance rejection results with a change of Q from 5 to 6.

Next, the value of Q will be increased from 5 to 6 as shown in Figure 5.16. The graph

shows normal operation as previously discussed up to 300 time steps. Q then changes

from 5 to 6 and the critical point P1 changes from 1.62 to 1.73. The setpoint is below the

critical point, in the unstable reigon. As the controller brings the system to the setpoint,

the system becomes unstable, just as when Q = 5. This setpoint, however, is further

into the unstable reigon so they system stays in there longer, which results in increased

oscillations during the periods of expected stability.

Next, the value of Q will be increased from 5 to 7 as shown in Figure 5.17. The graph

shows normal operation as previously discussed up to 300 time steps. Q then changes

from 5 to 7 and the critical point P1 changes from 1.62 to 1.83. The setpoint is again

below the critical point,even further into the unstable reigon. As the controller brings the

system to the setpoint, the system becomes unstable, just as when Q = 5. This setpoint
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Figure 5.17: Disturbance rejection results with a change of Q from 5 to 7.

causes the system to remain in the unstable region almost entirely which produces an

almost completely oscillatory changes in x without a distinct period of stability.

The controllers were design for Q = 5 and had a setpoint that kept the system

balanced between the stable and unstable region. As the values of Q changed, so did the

neutral curve and the respective steady state values. This change in system dynamics

were outside the designed range of the FLC and therefore did not replicate the results as

when the value of Q remained stable. Next, simulations will be performed where both Q

and xref will change.

5.3.3 Disturbance Rejection Method 2

This method will provide more insight on disturbance rejection by also changing the x

setpoint with Q at 300 time steps. Shown in Figure 5.18 is a system that changes Q

from 5 to 3 and the setpoint for x from 1.59 to 1.31. The system behaves as previously
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Figure 5.18: Disturbance rejection results with a change of Q (5 to 3) and xref (1.59 to
1.31).

discussed up to 300 time steps, however, after the switch the systems behaves significantly

different than the previous section. In this case, since the x setpoint changes with Q, it

stays within 0.3 of the steady state value at the neutral curve. What this means is that

as the controller begins to respond, it is able to maintain a blance between the stable

and unstabel region to maintain stability in the system. These are all in contrast to the

previous section where this performance was not achieved. No changes were made to

FLC 3, only to Q and the setpoint xref . With this change to xref , the controller is able

to pass a functionality check for a change in Q. Figures 5.19 - 5.21 shows the controller’s

succesful disturbance rejection for changes in Q.
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Figure 5.19: Disturbance rejection results with a change of Q (5 to 4) and xref (1.59 to
1.46).

Figure 5.20: Disturbance rejection results with a change of Q (5 to 6) and xref (1.59 to
1.70).
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Figure 5.21: Disturbance rejection results with a change of Q (5 to 7) and xref (1.59 to
1.80).
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CHAPTER 6

Conclusion and Future Work

6.1 Conclusions

Robust and efficient controllers are important to both ensure thermal stability of complex

systems, like natural convection loops. Although PID controllers are well established in

industry, they lack robustness and often require constant retuning. In this work we

have developed three fuzzy-based controller that use information on the velocity error,

the difference of that error, and the integral of that error to provide inputs on the tilt

angle in order to stabilize the velocity and corresponding temperature. As expected, the

more information provided to the controllers, the better they perform. The simulations

show that the fuzzy controller successfully performs the control actions and it is able to

stabilize the system under different operating conditions. The controller has been tested

against different initial conditions as well as changes in heat input to simulate possible

situations in experimental situations. This work has provided a functionality check that

a fuzzy logic controller can be used for this application.

6.2 Future Work

A succesful implementation of fuzzy logic control in a natural convection loop opens the

door to several different paths to continue this work. Several optimization and applica-

tions can explored as listed below:

� Controller optimization: There are several membership function parameters in FL

controller design such as type, number, range, and weight for both the input and

the output. In addition, with each additional input and output added the amount
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of rules increase as well as the amount of possible combinations. The magnitude

of combinations available leave plenty of room for design optimization, most likley

using an optimization tool to run iterations instead of manually,

� Energy efficiency: optimizing the controller to find a balance between performance

and energy consumption,

� Implementation of a PID controller into the natural convection loop simulation to

compare against an optimized fuzzy logic controller

� Disturbance rejection: implement a design to automatically adjust the setpoint on

the feedback loop to compensate for any adjustments to heat input

� Disturbance rejection: test smaller changes in Q (such as 5 to 5.1) to determine

the functional range of the controller

� Disturbance rejection: determine if there exists a more complex controller design

that does not need to adjust the setpoint to controller different heat input values

� Scaling: if possible, determine the scale of a possible physical testbed by using

physical dimensions in a sumulation instead of dimensionless values

� Experiemental: build a testbed to test the controllers in a physical enviroment
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APPENDIX A

Development of Dynamical System

The following information provides detailed derivations of Eqs. (2.44) - (2.49). To this

end, we start with the governing equations as integro-differential equations. (2.44)-(2.46)

and a subsequent expansion in Fourier series for the temperature. Thus,

du∗

dt∗
+ u∗ =

1

π

[∫ 2π

0

T c0 (t) cos(θ + α)dθ+

∫ 2π

0

cos(θ + α)
∞∑
m=1

[T cm(t) cosmθ + T sm(t) sinmθ] cos(θ + α)dθ

]
. (A.1)

Equation (A.1) will be broken down and each term simplified as shown next.

To simplify

∫ 2π

0

T c0 (t) cos(θ + α)dθ (A.2)

∫ 2π

0

T c0 (t) cos(θ + α)dθ = T c0 (t)

∫ 2π

0

cos(θ + α)dθ (A.3)
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Recall:

cos(θ + α)dθ = (cos θ cosα− sin θ sinα)dθ (A.4)∫ 2π

0

T c0 (t) cos(θ + α)dθ = T c0 (t)

∫ 2π

0

(cos θ cosα− sin θ sinα)dθ (A.5)∫ 2π

0

T c0 (t) cos(θ + α)dθ = T c0 (t)

[∫ 2π

0

cos θ cosαdθ −
∫ 2π

0

sin θ sinαdθ

]
(A.6)∫ 2π

0

T c0 (t) cos(θ + α)dθ = T c0 (t)

[
cosα

∫ 2π

0

cos θdθ − sinα

∫ 2π

0

sin θdθ

]
(A.7)

To simplify,

∫ 2π

0

cos θ = sin θ

∣∣∣∣∣
2π

0

= sin 2π − sin 0 = 0− 0 = 0 (A.8)

∫ 2π

0

sin θ = − cos θ

∣∣∣∣∣
2π

0

= −(cos 2π − cos 0) = 1− 1 = 0 (A.9)

∫ 2π

0

T c0 (t) cos(θ + α)dθ = T c0 (t) [(cosα)(0)− (sinα)(0)] = 0 (A.10)

The above term will be substituted back into Equation A.1.

du∗

dt∗
+ u∗ =

1

π

[
(0) +

∫ 2π

0

cos(θ + α)
∞∑
m=1

[T cm(t) cosmθ+

T sm(t) sinmθ] cos(θ + α)dθ

]
(A.11)
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Next, the term in the brackets will be expanded then simplified.

du∗

dt∗
+ u∗ =

1

π

[∫ 2π

0

cos(θ + α)
∞∑
m=1

[T cm(t) cosmθ + T sm(t) sinmθ] cos(θ + α)dθ

]
(A.12)[∫ 2π

0

cos(θ + α)
∞∑
m=1

[T cm(t) cosmθ + T sm(t) sinmθ] cos(θ + α)dθ

]
= (A.13)

∞∑
m=1

[∫ 2π

0

cos(θ + α)T cm(t) cosmθdθ +

∫ 2π

0

cos(θ + α)T sm(t) sinmθdθ

]
(A.14)

The “first term” term with the variable T cm(t) will be simplified.

∞∑
m=1

∫ 2π

0

cos(θ + α)T cm(t) cosmθdθ = (A.15)

=
∞∑
m=1

T cm(t)

∫ 2π

0

(cos θ cosα− sin θ sinα) cosmθdθ (A.16)

=
∞∑
m=1

T cm(t)

[∫ 2π

0

cos θ cosα cosmθdθ −
∫ 2π

0

sin θ sinα cosmθdθ

]
(A.17)

=
∞∑
m=1

T cm(t)

[
cosα

∫ 2π

0

cos θ cosmθdθ − sinα

∫ 2π

0

sin θ cosmθdθ

]
(A.18)

By recalling the orthoganality conditions, namely,

∫
τ

sinnx cos kxdx = 0 (A.19)∫
τ

cosnx cos kxdx = 0;n 6= k (A.20)∫
τ

sinnx sin kxdx = 0, n 6= k, (A.21)

we can simplify the above experssions. Note: for m values > 1, the entire term will go

to zero as shown below and will not allow the variable T cm(t) to be solved. Therefore, we
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will consider m = 1 moving ahead with the derivation.

=
∞∑
m=2

T cm(t)

[
(cosα)(0)− (sinα)(0)

]
= 0 (A.22)

For m=1:

=
1∑

m=1

T cm(t)

[
cosα

∫ 2π

0

cos θ cosmθdθ − (sinα)(0)

]
(A.23)

=
1∑

m=1

T c1 (t) cosα

∫ 2π

0

cos θ cos θdθ = T c1 (t) cosα

∫ 2π

0

cos2 θdθ (A.24)

= T c1 (t) cosα

∫ 2π

0

[
1

2
(1 + cos 2θ)]dθ = T c1 (t) cosα(

1

2
)

∫ 2π

0

(1 + cos 2θ)dθ (A.25)

= T c1 (t) cosα(
1

2
)

[∫ 2π

0

dθ +

∫ 2π

0

cos 2θdθ

]
(A.26)

= T c1 (t) cosα(
1

2
)

[
θ

∣∣∣∣∣
2π

0

+
1

2
sin 2θ

∣∣∣∣∣
2π

0

]
(A.27)

= T c1 (t) cosα(
1

2
)

[
(2π − 0) +

1

2
(sin 4π − sin 0)

]
(A.28)

= T c1 (t) cosα(
1

2
)

[
(2π) +

1

2
(0− 0)

]
(A.29)

= πT c1 (t) cosα (A.30)
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1∑
m=1

T c1 (t) cosα

∫ 2π

0

cos θ cosmθdθ = πT c1 (t) cosα (A.31)

∫ 2π

0

cos θ cosmθdθ = π (A.32)

=
∞∑
m=1

T cm(t)

[
cosα

∫ 2π

0

cos θ cosmθdθ − sinα

∫ 2π

0

sin θ cosmθdθ

]
(A.33)

= T c1 (t)

[
(cosα)(π)− (sinα)(0)

]
(A.34)

∞∑
m=1

∫ 2π

0

cos(θ + α)T cm(t) cosmθdθ = T c1 (t)(cosα)(π) (A.35)

The “first term” has been simplified as shown above. Next, the “second term” with the

variable T sm(t) will be simplified.

∞∑
m=1

[∫ 2π

0

cos(θ + α)T cm(t) cosmθdθ +

∫ 2π

0

cos(θ + α)T sm(t) sinmθdθ

]
(A.36)

∞∑
m=1

∫ 2π

0

cos(θ + α)T sm(t) sinmθdθ = (A.37)

=
∞∑
m=1

T sm(t)

∫ 2π

0

sinmθ(cos θ cosα− sin θ sinα)dθ (A.38)

=
∞∑
m=1

T sm(t)

[∫ 2π

0

sinmθ cos θ cosα−
∫ 2π

0

sinmθ sin θ sinα)dθ

]
(A.39)

=
∞∑
m=1

T sm(t)

[
cosα

∫ 2π

0

sinmθ cos θdθ − sinα

∫ 2π

0

sinmθ sin θdθ

]
(A.40)

=
∞∑
m=1

T sm(t)

[
(cosα)(0)− sinα

∫ 2π

0

sinmθ sin θdθ

]
(A.41)
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Recall orthoganality conditions:

=
∞∑
m=2

T sm(t)

[
(cosα)(0)− sinα(0)

]
= 0 (A.42)

=
1∑

m=1

T s1 (t)

[
− sinα

∫ 2π

0

sin2 θdθ

]
(A.43)

Note above in equation x, for values of m > 1 the term will go to zero and the term T s1 (t)

will go to zero. Therefore, the derivation will proceed with m = 1.

= −T s1 (t) sinα

∫ 2π

0

sin2 θdθ (A.44)

= −T s1 (t) sinα

∫ 2π

0

(
1

2
− 1

2
cos 2θdθ) (A.45)

= −T s1 (t) sinα
1

2

∫ 2π

0

(1− cos 2θdθ) (A.46)

= −T s1 (t) sinα
1

2

[∫ 2π

0

dθ −
∫ 2π

0

cos 2θdθ

]
(A.47)

= −T s1 (t) sinα
1

2

[
θ

∣∣∣∣∣
2π

0

− (− sin 2θ)

∣∣∣∣∣
2π

0

]
(A.48)

= −T s1 (t) sinα
1

2

[
(2π − 0) + (sin 4π − sin 0)

]
(A.49)

= −T s1 (t) sinα
1

2

[
2π + (0− 0)

]
(A.50)

∞∑
m=1

∫ 2π

0

cos(θ + α)T sm(t) sinmθdθ = −T s1 (t)(sinα)(π) (A.51)

Below is the term in brackets, followed by the substitutions of the first and second terms
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that were just simplified.

du∗

dt∗
+ u∗ =

1

π

[
(0) +

∫ 2π

0

cos(θ + α)
∞∑
m=1

[T cm(t) cosmθ+

T sm(t) sinmθ] cos(θ + α)dθ

]
(A.52)

du∗

dt∗
+ u∗ =

1

π

[
[T c1 (t)(cosα)(π)] + [−T s1 (t)(sinα)(π)]

]
(A.53)

du∗

dt∗
+ u∗ = T c1 (t) cosα− T s1 (t) sinα (A.54)

du∗

dt∗
= −u∗ + T c1 (t) cosα− T s1 (t) sinα (A.55)

(A.56)

The equation above is the simplified momentum equation. Next, the energy equation will

be simplified. Recall the heated condition is known heat flux around the thermosyphon

loop. The following equations apply to this condition.

∂T ∗

∂t∗
+ u∗

∂T ∗

∂θ
= q∗ (A.57)

q∗ = −Q sin θ (A.58)

∂T ∗

∂t∗
=

∂

∂t∗
T ∗ (A.59)

The temperature term can be expanded using the Fourier series as shown below, and will
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substituted into the energy equation.

T (t, θ) = T c0 (t) +
∞∑
m=1

[T cm(t) cosmθ + T sm(t) sinmθ] (A.60)

Expand and simplify:

∂T ∗

∂t∗
(A.61)

∂T ∗

∂t∗
=

∂

∂t∗
T ∗ (A.62)

∂

∂t∗
T ∗ =

∂

∂t∗

[
T c0 (t) +

∞∑
m=1

[T cm(t) cosmθ + T sm(t) sinmθ]

]
(A.63)

=
∂

∂t∗
T c0 (t) +

∂

∂t∗

∞∑
m=1

[T cm(t) cosmθ + T sm(t) sinmθ] (A.64)

=
∂

∂t∗
T c0 (t) +

∞∑
m=1

[
∂

∂t∗
T cm(t) cosmθ +

∂

∂t∗
T sm(t) sinmθ

]
(A.65)

∂

∂t∗
T ∗ =

∂

∂t∗
T c0 (t) +

∞∑
m=1

[
∂T cm(t)

∂t∗
cosmθ +

∂T sm(t)

∂t∗
sinmθ

]
(A.66)

Expand and simplify:

∂T ∗

∂θ
(A.67)
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∂T ∗

∂θ
=

∂

∂θ
T ∗ =

∂

∂θ

[
T c0 (t) +

∞∑
m=1

[T cm(t) cosmθ + T sm(t) sinmθ]

]
(A.68)

∂

∂θ
T ∗ =

∂

∂θ
T c0 (t) +

∞∑
m=1

[
∂

∂θ
T cm(t) cosmθ +

∂

∂θ
T sm(t) sinmθ

]
(A.69)

∂

∂θ
T ∗ = (0) +

∞∑
m=1

[
−mT cm(t) sinmθ +mT sm(t) cosmθ

]
(A.70)

The two terms that were expanded and simplified will be substituted back into the energy

equation.

∂T ∗

∂t∗
+ u∗

∂T ∗

∂θ
= q∗ (A.71)

Recall:

q∗ = −Q sin θ (A.72)

∂

∂t∗
T c0 (t) +

∞∑
m=1

[
∂T cm(t)

∂t∗
cosmθ +

∂T sm(t)

∂t∗
sinmθ

]
+ (A.73)

u∗
∞∑
m=1

[
−mT cm(t) sinmθ +mT sm(t) cosmθ

]
= −Q sin θ (A.74)

Multiply the entire equation by:

∫ 2π

0

cosnθdθ; (A.75)
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∂

∂t∗
T c0 (t)

[∫ 2π

0

cosnθdθ

]
+ (A.76)

∞∑
m=1

[
∂T cm(t)

∂t∗
cosmθ +

∂T sm(t)

∂t∗
sinmθ

][ ∫ 2π

0

cosnθdθ

]
+ (A.77)

u∗
∞∑
m=1

[
−mT cm(t) sinmθ +mT sm(t) cosmθ

][∫ 2π

0

cosnθdθ

]
= (A.78)

−Q sin θ

[∫ 2π

0

cosnθdθ

]
(A.79)

∂

∂t∗
T c0 (t)

[∫ 2π

0

cosnθdθ

]
+ (A.80)

∞∑
m=1

[
∂T cm(t)

∂t∗

∫ 2π

0

cosnθ cosmθdθ +
∂T sm(t)

∂t∗

∫ 2π

0

cosnθ sinmθdθ

]
+ (A.81)

u∗
∞∑
m=1

[
−mT cm(t)

∫ 2π

0

cosnθ sinmθdθ +mT sm(t)

∫ 2π

0

cosnθ cosmθdθ

]
= (A.82)

−Q

[∫ 2π

0

cosnθ sin θdθ

]
(A.83)

∂

∂t∗
T c0 (t)

[
1

n
sinnθ

∣∣∣∣∣
2π

0

]
+ (A.84)

∞∑
m=1

[
∂T cm(t)

∂t∗

∫ 2π

0

cosnθ cosmθdθ +
∂T sm(t)

∂t∗
(0)

]
+ (A.85)

u∗
∞∑
m=1

[
−mT cm(t)(0) +mT sm(t)

∫ 2π

0

cosnθ cosmθdθ

]
= (A.86)

−Q

[
(0)

]
(A.87)
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∂

∂t∗
T c0 (t)

[
(0)

]
+ (A.88)

∞∑
m=1

[
∂T cm(t)

∂t∗

∫ 2π

0

cosnθ cosmθdθ + (0)

]
+ (A.89)

u∗
∞∑
m=1

[
(0) +mT sm(t)

∫ 2π

0

cosnθ cosmθdθ

]
= 0 (A.90)

∞∑
m=1

[
∂T cm(t)

∂t∗

∫ 2π

0

cosnθ cosmθdθ

]
+ (A.91)

u∗
∞∑
m=1

[
+mT sm(t)

∫ 2π

0

cosnθ cosmθdθ

]
= 0 (A.92)

∞∑
m=2

[
∂T cm(t)

∂t∗
(0)

]
+ (A.93)

u∗
∞∑
m=2

[
+mT sm(t)(0)

]
= 0 (A.94)

0 = 0 (A.95)

Note the above equation showns that for m 6= n the term T sm(t) will dissapear, the

derivation will continue with m = n.

1∑
m=1

[
∂T c1 (t)

∂t∗

∫ 2π

0

cos2 θdθ

]
+ (A.96)

u∗
1∑

m=1

[
+mT s1 (t)

∫ 2π

0

cos2 θdθ

]
= 0;n = 1, 2, 3 (A.97)
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Recall:

∫ 2π

0

cos2 θdθ = π (A.98)

1∑
m=1

[
∂T c1 (t)

∂t∗
(π)

]
+ u∗

1∑
m=1

[
+mT s1 (t)(π)

]
= 0 (A.99)

∂T c1 (t)

∂t∗
+ u∗T s1 (t) = 0 (A.100)

∂T c1 (t)

∂t∗
= −u∗T s1 (t) (A.101)

T c1 (t) has been solved for above. Next, the other coefficient will be solved for.

Multiple the entire equation by:

∫ 2π

0

sinnθdθ; (A.102)

∂

∂t∗
T c0 (t)

[∫ 2π

0

sinnθdθ

]
+ (A.103)

∞∑
m=1

[
∂T cm(t)

∂t∗
cosmθ +

∂T sm(t)

∂t∗
sinmθ

][ ∫ 2π

0

sinnθdθ

]
+ (A.104)

u∗
∞∑
m=1

[
−mT cm(t) sinmθ +mT sm(t) cosmθ

][∫ 2π

0

sinnθdθ

]
= (A.105)

−Q sin θ

[∫ 2π

0

sinnθdθ

]
(A.106)
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∂

∂t∗
T c0 (t)

[∫ 2π

0

sinnθdθ

]
+ (A.107)

∞∑
m=1

[
∂T cm(t)

∂t∗

∫ 2π

0

sinnθ cosmθdθ +
∂T sm(t)

∂t∗

∫ 2π

0

sinnθ sinmθdθ

]
+ (A.108)

u∗
∞∑
m=1

[
−mT cm(t)

∫ 2π

0

sinnθ sinmθdθ +mT sm(t)

∫ 2π

0

sinnθ cosmθdθ

]
= (A.109)

−Q

[∫ 2π

0

sinnθ sin θdθ

]
(A.110)

∂

∂t∗
T c0 (t)

[
1

n
cosnθ

∣∣∣∣∣
2π

0

]
+ (A.111)

∞∑
m=1

[
∂T cm(t)

∂t∗
(0) +

∂T sm(t)

∂t∗

∫ 2π

0

sinnθ sinmθdθ

]
+ (A.112)

u∗
∞∑
m=1

[
−mT cm(t)

∫ 2π

0

sinnθ sinmθdθ +mT sm(t)(0)

]
= (A.113)

−Q

[∫ 2π

0

sinnθ sin θdθ

]
(A.114)

∂

∂t∗
T c0 (t)

[
(0)

]
+ (A.115)

∞∑
m=1

[
(0) +

∂T sm(t)

∂t∗

∫ 2π

0

sinnθ sinmθdθ

]
+ (A.116)

u∗
∞∑
m=1

[
−mT cm(t)

∫ 2π

0

sinnθ sinmθdθ + (0)

]
= (A.117)

−Q

[∫ 2π

0

sinnθ sin θdθ

]
(A.118)
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∞∑
m=1

[
∂T sm(t)

∂t∗

∫ 2π

0

sinnθ sinmθdθ

]
+ (A.119)

u∗
∞∑
m=1

[
−mT cm(t)

∫ 2π

0

sinnθ sinmθdθ

]
= (A.120)

−Q

[∫ 2π

0

sinnθ sin θdθ

]
(A.121)

∞∑
m=2

[
∂T sm(t)

∂t∗
(0)

]
+ (A.122)

u∗
∞∑
m=2

[
−mT cm(t)(0)

]
= (A.123)

−Q

[
(0)

]
(A.124)

0 = 0 (A.125)

Note the above equation showns that for m 6= n the term T sm(t) will dissapear, the

derivation will continue with m = n.

1∑
m=1

[
∂T s1 (t)

∂t∗

∫ 2π

0

sin2 θdθ

]
+ (A.126)

u∗
1∑

m=1

[
−mT c1 (t)

∫ 2π

0

sin2 nθdθ

]
= (A.127)

−Q

[∫ 2π

0

sin2 nθdθ

]
;n = 1, 2, 3 (A.128)

1∑
m=1

[
∂T s1 (t)

∂t∗
(π)

]
+ u∗

1∑
m=1

[
− T c1 (t)(π)

]
= −Q

[
(π)

]
;n = 1, 2, 3 (A.129)

∂T s1 (t)

∂t∗
− u∗T c1 (t) = −Q;n = 1, 2, 3; (A.130)
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Truncate, n = 1;

∂T s1 (t)

∂t∗
= −Q+ u∗T c1 (t) (A.131)

T s1 (t) has been solved for under the condition that the Fourier series expansion will be

tuncated for n = 1. These two coefficients and the momentum equation are shown below.

Note that there are now three variables (u∗, T c1 (t), T s1 (t)) and three non linear differential

equations.
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APPENDIX B

Linear Stability Analysis using the Routh-Hurwitz Stability Criterion

The following provides a detailed derivations between Equations (3.14) - (3.38).

A linear stability analysis on this toroidal thermosyhon with known heat flux was

performed by Pacheco-Vega et. al [10]. In thier work, a linear stability curve graph was

developed that accurately predicted what type of behavior would result for any given

heat input and tilt angle combination. This analysis is outlined below.

A linear stability analysis using the critical points can be performed, starting with

the following equations:

x(t) = x̄+ x′eλt, (B.1)

y(t) = ȳ + y′eλt, (B.2)

z(t) = z̄ + z′eλt, (B.3)

with x(t), y(t), z(t) as the dimensionless variables, x̄, ȳ, z̄ as the steady state solutions, and

x′eλt, y′eλt, z′eλt as the perturbations in the system. As described in Sen et. al [28], these

perturbations have an amplitude of x′, y′, z′ and will either grow and decay depending

on the value for λ, particularly if it is positive or negative. Further, the stability of the

system will depend on if the lambda values are real, imaginary, or a combination of the

two as is solved during this section. Taking the derivative of both sides provides the next
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set of equations,

dx

dt
= λx′eλt, (B.4)

dy

dt
= λy′eλt, (B.5)

dz

dt
= λz′eλt. (B.6)

The above equations for x, y, z and dx/dt, dy/dt, dz/dt can be substituted in to the three

governing Eq’s, (3.34 - 3.36), shown below:

λx′eλt = −[x̄+ x′eλt] + [ȳ + y′eλt] cosα− [z̄ + z′eλt] sinα, (B.7)

λy′eλt = −[x̄+ x′eλt][z̄ + z′eλt], (B.8)

λz′eλt = −Q+ [x̄+ x′eλt][ȳ + y′eλt]. (B.9)

Note this is a linear analysis and any nonlinear terms will be neglegted. For example,

the multiplication of x′y′ will result in an infinitesimally small nonlinear terms so it will

be neglected in this analysis. After mathematical reductions, these equations simplify to

the following:

λx′ = −x′ + y′ cosα− z′ sinα, (B.10)

λy′ = −x′z̄ − x̄z′, (B.11)

λz′ = +x′ȳ + x̄y′. (B.12)
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Combining the x′, y′, z′ terms results in the following equations,

−(λ+ 1)x′ + (cosα)y′ + (− sinα)z′ = 0, (B.13)

(z̄)x′ + (−λ)y′ + (−x̄)z′ = 0, (B.14)

(ȳ)x′ + (x̄)y′ + (−λ)z′ = 0. (B.15)

These equation can now be put into matricies to combine the eigen values λ,


−(λ+ 1) cosα − sinα

z̄ −λ −x̄

ȳ x̄ −λ




x′

y′

z′

 =


0

0

0

 ,

−(λ+ 1)

−λ −x̄

x̄ −λ

− (cosα)

z̄ −x̄
ȳ −λ

+ (− sinα)

z̄ −λ
ȳ x̄

 = 0.

Combining like terms and simplifying the equations results in the following polynomial,

λ3 + λ2 + λ(Q cosα +

√
Q

cosα
sinα) + 2Q cosα = 0. (B.16)

Consider using synthetic division on this polynomial to geta root of −1. To get an exact

root, the last term in the division slot must equal 0, shown below,

2Q cosα−Q cosα−
√

Q

cosα
= 0, (B.17)

Q =
sin2 α

cos3 α
. (B.18)
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This means for the iniital eigenvalue polynomial to have a root of −1, the above must

be true. The remainder polynomical can be solved as follows:

λ2 +Q cosα +

√
Q

cosα
sinα = 0, (B.19)

Q =
sin2 α

cos3 α
, (B.20)

λ2 + (
sin2 α

cos3 α
) cosα +

√
sin2 α
cos3 α

cosα
sinα = 0, (B.21)

λ2 + 2
sin2 α

cos2 α
= 0, (B.22)

λ = ±
√

2 i
sinα

cosα
, (B.23)

Q =
sin2 α

cos3 α
;
√
Q cosα =

sinα

cosα
, (B.24)

λ = ±
√

2Q cosα i. (B.25)

This provides three eigen values: (−1, +
√

2Q cosα i, −
√

2Q cosα i). Next, the Routh

Stability Criterion can be applyed to check for unstable roots and evaluate stability in a

control system. The polynomial is first written in the following structure with a as the

coefficients:

a0s
n + a1s

n−1 + . . .+ an−1s+ an = 0, (B.26)

λ3 + λ2 + λ(Q cosα +

√
Q

cosα
sinα) + 2Q cosα = 0, (B.27)

a0 = 1; a1 = 1; a2 = Q cosα +

√
Q

cosα
sinα; a3 = 2Q cosα. (B.28)
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If all the coefficients are positive, the following pattern is set up as follows:

sn a0 a2 a4 . . .

sn−1 a1 a3 a5 . . .

sn−2 b1 b2 b3 . . .

sn−3 c1 c2 c3 . . .

...
...

...
...

s1 d1

s0 e1

.

with the applicable coefficients for b and c given as:

b1 =
a1a2 − a0a3

a1

, (B.29)

b2 =
a1a4 − a0a5

a1

, (B.30)

c1 =
b1a3 − a1b2

b1

. (B.31)

Using the values for a coefficients to find the b and c coefficients results in the following

pattern,

λ3 1 Q cosα +
√

Q
cosα

sinα 0

λ2 1 2Q cosα 0

λ1
√

Q
cosα

sinα−Q cosα 0 0

λ0 2Q cosα 0 0

.

If the coefficients in the second column are all positive, the system can be considered

stable. This provides two conidtions that must be considered. The first conditions must
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be:

√
Q

cosα
sinα−Q cosα ≥ 0, (B.32)

Q ≤ sin2 α

cos3 α
, (B.33)

and the second condition must be:

2Q cosα ≥ 0, (B.34)

cosα ≥ 0, (B.35)

−90◦ ≥ α ≥ 90◦. (B.36)

A final test is to determine if that system is dissipative, meaning, the right hand side

of the governing equations diverge to −1. This is done by using the nabla operator on

the governing equations as shown below: These equations are then put into the form of

ẋ = Ax+ b, 
ẋ

ẏ

ż

 =


−1 cosα − sinα

0 0 −x

0 x o




x

y

z

+


0

0

−Q

 .

The nabla operator is then used on the system to determine if the system diverges,

∇ · (Ax+ b) =

[
∂
∂x

∂
∂y

∂
∂z

]

−x+ y cosα− z sinα

−xz

−Q+ xy

 .
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Expanding the equation results in the following:

∇ · (Ax+ b) =
∂

∂x
(−x+ y cosα− z sinα) +

∂

∂y
(−xz) +

∂

∂z
(−Q+ xy) (B.37)

∇ · (Ax+ b) = (−1 + 0 + 0) + (0) + (0 + 0) (B.38)

∇ · (Ax+ b) = −1 (B.39)

The divergence to -1 indicats that the system is dissipative. The analysis conducted in

this section produces a linear stability curve graph that can predict the stability of this

system.

Consider the range 0 < α < 90◦, P1 is stable while Q 6 sin2 α/ cos3 α, with α > 0 [10].

This linear stability curve is shown below in Figure 3.1 and shows the relationship between

fluid flow stability, heat input, and tilt angle variables which provides the foundation for

developing a control strategy.
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APPENDIX C

Custom MATLAB Solver for a Three Equation Dynamical System

clc;

clear all;

h=0.1; % step size

t = 0:h:1000;

x = zeros(1,length(t)); % u, dimensionless

y = zeros(1,length(t)); % T*c, dimensionless

z = zeros(1,length(t)); % T*s, dimesnionless

x(1) = 0; % initial condition

y(1) = 0; % initial condition

z(1) = 0; % initial condition

a = 30; %60 58 50 30 % alpha

q = 5; % heat input, dimensionless

F_txyz = @(t,x,y,z) -x + y*cosd(a) - z*sind(a); % dx/dt

G_txyz = @(t,x,y,z) -x*z; % dy/dt
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H_txyz = @(t,x,y,z) -q + x*y; % dz/dt

for i=1:(length(t)-1) % calc loop

k_1 = F_txyz(t(i),x(i),y(i),z(i));

L_1 = G_txyz(t(i),x(i),y(i),z(i));

m_1 = H_txyz(t(i),x(i),y(i),z(i));

k_2 = F_txyz(t(i)+0.5*h,x(i)+0.5*h*k_1,y(i)+0.5*h*L_1,...

z(i)+0.5*h*m_1);

L_2 = G_txyz(t(i)+0.5*h,x(i)+0.5*h*k_1,y(i)+0.5*h*L_1,...

z(i)+0.5*h*m_1);

m_2 = H_txyz(t(i)+0.5*h,x(i)+0.5*h*k_1,y(i)+0.5*h*L_1,...

z(i)+0.5*h*m_1);

k_3 = F_txyz((t(i)+0.5*h),(x(i)+0.5*h*k_2),...

(y(i)+0.5*h*L_2),(z(i)+0.5*h*m_2));

L_3 = G_txyz((t(i)+0.5*h),(x(i)+0.5*h*k_2),...

(y(i)+0.5*h*L_2),(z(i)+0.5*h*m_2));

m_3 = H_txyz((t(i)+0.5*h),(x(i)+0.5*h*k_2),...

(y(i)+0.5*h*L_2),(z(i)+0.5*h*m_2));

k_4 = F_txyz((t(i)+h),(x(i)+k_3*h),(y(i)+L_3*h),...

(z(i)+m_3*h));

L_4 = G_txyz((t(i)+h),(x(i)+k_3*h),(y(i)+L_3*h),...

(z(i)+m_3*h));

m_4 = H_txyz((t(i)+h),(x(i)+k_3*h),(y(i)+L_3*h),...

(z(i)+m_3*h));
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x(i+1) = x(i) + (1/6)*(k_1+2.*k_2+2.*k_3+k_4)*h; % main eq

y(i+1) = y(i) + (1/6)*(L_1+2.*L_2+2.*L_3+L_4)*h; % main eq

z(i+1) = z(i) + (1/6)*(m_1+2.*m_2+2.*m_3+m_4)*h; % main eq

end

xm(a,:) = x;

ym(a,:) = y;

zm(a,:) = z;

x1 = (15/8)*(exp(-5*t)-2*exp(-3*t)+exp(-t));

y1 = (5/2)*(-exp(-5*t)+exp(-3*t));

z1 = exp(-5*t);
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