
A CLASSIFICATION MODEL UTILIZING FACIAL

LANDMARK TRACKING TO DETERMINE

SENTENCE TYPES FOR AMERICAN

SIGN LANGUAGE RECOGNITION

A Thesis Presented to

The Faculty of Department of Electrical and Computer Engineering

California State University, Los Angeles

In Partial Fulfillment

Of the Requirements for the

Master of Science

In

Electrical and Computer Engineering

By

Janice Trinh Nguyen

August 2023

J.Nguyen

©Copyright by
Janice Nguyen

2023
All Rights Reserved

i California State University, Los Angeles

J.Nguyen

The thesis of Janice Nguyen is approved.

Y. Curtis Wang, Committee Director
Deborah Won, Committee Member
Charles Liu, Committee Member
Charles Liu, Department Chair

California State University, Los Angeles

ii California State University, Los Angeles

J.Nguyen

ABSTRACT
A Classification Model Utilizing Facial Landmark Tracking to Determine Sentence Types

for American Sign Language Recognition
By

Janice Nguyen

Real time ASL language interpreting is lacking and requires additional work in order to

be achieved. To implement an effective real time interpreting model, the linguistic structure

and rules of ASL must be taken into account. In general, ASL has 5 parameters (hand

shape, palm orientation, facial expression, movement, and location relative to the body)

that dictate sign meaning and sentence structure. A majority of ASL interpreting models

are hand shape (gesture) based and lack the integration of facial cues, which are crucial in

ASL to convey tone and distinguish sentence types.

Thus, the integration of facial cues in computer vision based ASL interpreting models

has the potential to improve performance and reliability. With this in mind, we propose a

new sentence classification model based on facial expressions that will supplement current

ASL interpreting models that are hand gesture based. We implement the random forest tree

classifier and support vector machine algorithms that are trained on facial angles to classify

videos of ASL signers signing complete sentences. These facial angles were calculated using

simple trigonometric calculations on facial points derived from the dlib library. This model

is created to work in conjunction with current hand gesture based ASL models to ensure

real time ASL interpreting.

Future directions for this project include designing the model so that it can interpret more

sentence types and potentially interpret multiple people in one frame. With the improvement

of these models, advance technology such as smart devices can be more accessible to hearing-

impaired individuals and help improve building sustainability by improving accessibility of

control of the building’s HVAC systems for hearing impaired individuals.

iii California State University, Los Angeles

J.Nguyen

ACKNOWLEDGMENTS

I would like to give my sincerest gratitude to the multitude of people who have made my

master’s degree an incredible journey and helped me become the engineer I am today.

First, I’d like to thank the CREST Center for Energy and Sustainability and the CREST

Center for Advancement Towards Sustainable Urban Systems for funding this project through

National Science Foundation awards HRD-1547723 and HRD-2112554, respectively.

Next, I would like to give immense gratitude to the very first professor I met at CSULA

and the reason I was able to meet so many people here who have made such an impact on

my education. Thank you so much Dr. Won for welcoming me into BE WINNORS and the

Biomedical Engineering community at CSULA. From showing me constant support since

our very first meeting to pushing me to be a better engineer, I would never have been able

to find a supportive community at CSULA without your help.

To the computer vision team from BE WINNORS (Abby, Maria, and Chris), thank you

for the constant support. From the late night codings to the random memes, I cherished

every moment working with you all in BE WINNORS and all the wonderful moments we

shared after the program was done. Thank you for always constantly cheering me on even

when I was getting too distracted with Sesame Street games.

I would also like to give my thanks to Dr. Liu, Dr. Zhao and the DAD (Dat, Anthony,

and Daniel) TAs for welcoming me into the computer engineering crew as an honorary MOM

TA and giving me a chance to inspire the next generation of future engineers. From leading a

group of students to creating educational videos, I greatly enjoyed having the opportunity to

teach and learn more about the importance of computer architectures and other engineering

topics. Thank you for giving me the opportunity to teach others the joys of engineering and

sharing in the struggles of how to use and spell panopto.

Furthermore, I’d like to thank Dr. Shen and my mechanical engineering boys (Carlito,

Luis, and Tim) who accompanied me to UW-Madison. Thank you for showing me true

teamwork. From fighting off bugs (both in our code and the scary cockroaches) to exploring

iv California State University, Los Angeles

J.Nguyen

Wisconsin together, I am immensely grateful for everyone’s constant offer of help even outside

of lab. Thank you for showing me what it’s like to be part of a team and for always offering

a helping hand.

And lastly, I’d like to give my eternal gratitude to my advisor, Dr. Wang. Thank you

for doing whatever you could to help me achieve my goals and for being a huge part of my

journey. From helping me get my first publication to sharing in the joys of my late-night

messages about my Phd acceptances, I am eternally grateful for your constant support and

nagging as I reach each of these milestones. Everything you have done for me has pushed me

to become a better engineer including you nitpicking my code and your extremely difficult

assignments. Yearncheesy your homework ain’t easy, but those assignments and having you

as an advisor sure did make me a better engineer and I can’t wait to make you proud.

A small acknowledgement section can never convey the immense gratitude I have for

all the people I have thanked and for the many others who had impacted my time here at

CSULA. I hope I can make you all proud one day. Thank you again for all the wonderful

memories.

v California State University, Los Angeles

J.Nguyen

DEDICATION

To SG:

Thank you for being there even when you weren’t.

To Lucky:

Thank you for being the light of my life for 15 years.

vi California State University, Los Angeles

Table of Contents

1 Introduction 1

1.1 Background . 2

1.2 ASL Syntax . 2

1.3 Current ASL Models based on Hand Gesture 3

1.4 Other Works in Facial Expression in ASL Interpreting Models 3

1.5 Random Forest Classification Tree Model . 4

1.6 Support Vector Machine . 4

1.7 Principal Component Analysis (PCA) . 5

1.8 General Proposed Pipeline . 5

2 Facial Feature Extraction 7

2.1 Introduction . 7

2.2 Data Set . 8

2.3 Dlib Library . 10

2.4 Changing Origin . 13

2.5 Angle Calculation . 14

3 Classification Model Pipeline 18

3.1 Introduction . 18

3.2 Reducing Redundant Data . 18

3.2.1 Reducing Dimensions using Averaging 19

3.2.2 Principal Component Analysis (PCA) 20

vii

J.Nguyen

3.3 Preliminary Classifiers Results . 20

3.4 Random Forest Classification . 21

3.4.1 Code Implementation . 22

3.4.2 Hyperparameters . 23

3.5 Support Vector Machine . 25

3.5.1 Code Implementation . 25

3.5.2 Hyperparameters . 26

4 Results 30

4.1 Random Forest Classification . 31

4.1.1 PC Grid Search . 32

4.1.2 Number of Trees Grid Search . 38

4.1.3 Minimum Sample Leaf . 47

4.1.4 Max Depth . 59

4.2 Support Vector Machine . 64

4.2.1 PC Grid search . 65

4.2.2 Kernel Grid Search . 72

4.2.3 Optimal Degree for Polynomial Kernel 75

4.2.4 Kernel Coefficient . 75

4.3 Comparison . 78

4.4 Classification Errors . 79

5 Conclusions and Future Directions 84

viii California State University, Los Angeles

List of Tables

3.1 Grid Search for Optimal PC for Random Forest Model (Number of Trees =

200, Min. Sample Leaf Size = 5) . 21

4.1 Confusion Matrix Random Forest Tree before PCA (Accuracy = 0.769, PC

= 0, Number of Trees = 200, Min. Sample Leaf Size = 5) 32

4.2 Grid Search for Optimal PC for Random Forest Model (Number of Trees =

200, Min. Sample Leaf Size = 5) . 33

4.3 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.827, PC =

4, Number of Trees = 200, Min. Sample Leaf Size = 5) 34

4.4 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC =

20 Number of Trees = 200, Min. Sample Leaf Size = 5) 35

4.5 Grid Search Model Training Execution Time (ms) for Optimal PC for Random

Forest Model (Number of Trees = 200; Min. Leaf Sample = 5) 35

4.6 Grid Search Model Execution Time (ms) on Testing Data Set for Optimal PC

for Random Forest Model (Number of Trees = 200; Min. Leaf Sample = 5) . 35

4.7 Grid Search PCA Training Execution Time (ms) for Optimal PC for Random

Forest Model (Number of Trees = 200; Min. Leaf Sample = 5) 36

4.8 Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal PC

for Random Forest Model (Number of Trees = 200; Min. Leaf Sample = 5) . 37

4.9 Grid Search for Optimal Number of Trees (PC = 4; Min. Sample Leaf = 5) . 41

4.10 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.827, PC =

4, Number of Trees = 20, Min. Sample Leaf Size = 5,) 41

ix

J.Nguyen

4.11 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.827, PC =

4, Number of Trees = 60, Min. Sample Leaf Size = 5) 42

4.12 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.846, PC =

4, Number of Trees = 80, Min. Sample Leaf Size = 5) 42

4.13 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.827, PC =

4, Number of Trees = 100, Min. Sample Leaf Size = 5) 43

4.14 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.846, PC =

4, Number of Trees = 220, Min. Sample Leaf Size = 5) 43

4.15 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC =

4, Number of Trees = 240, Min. Sample Leaf Size = 5) 43

4.16 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC =

4, Number of Trees = 260, Min. Sample Leaf Size = 5) 43

4.17 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC =

4, Number of Trees = 280, Min. Sample Leaf Size = 5) 43

4.18 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC =

4, Number of Trees = 300, Min. Sample Leaf Size = 5) 44

4.19 Grid Search Model Training Execution Time (ms) for Optimal Number of

Trees for Random Forest Model (PC = 4; Min Leaf Sample = 5) 44

4.21 Grid Search PCA Training Execution Time (ms) for Optimal Number of Trees

for Random Forest Model (PC = 4; Min Leaf Sample = 5) 45

4.20 Grid Search Model Execution Time (ms) on Testing Data Set for Optimal

Number of Trees for Random Forest Model (PC = 4; Min Leaf Sample = 5) 46

4.22 Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal

Number of Trees for Random Forest Model (PC = 4; Min Leaf Sample = 5) 46

4.23 Grid Search Model Training Execution Time (ms) for Minimum Number of

Leaves for Random Forest Model (Number of Trees = 100; PC = 4) 48

x California State University, Los Angeles

J.Nguyen

4.24 Grid Search Model Execution Time (ms) on Testing Data Set for Minimum

Number of Leaves for Random Forest Model (Number of Trees = 100; PC = 4) 49

4.25 Grid Search PCA Training Execution Time (ms) for Minimum Number of

Leaves for Random Forest Model (Number of Trees = 100; PC = 4) 50

4.26 Grid Search PCA Execution Time (ms) on Testing Data Set for Minimum

Number of Leaves for Random Forest Model (Number of Trees = 100) 51

4.27 Grid Search for Optimal Minimum Sample Leaf Size for Number of Trees =

100 (PC = 4) . 52

4.28 Grid Search for Optimal Minimum Sample Leaf Size for Number of Trees =

240 (PC = 4) . 53

4.29 Grid Search Model Training Execution Time (ms) for Minimum Number of

Leaves for Random Forest Model (Number of Trees = 240; PC = 4) 54

4.30 Grid Search Model Execution Time (ms) on Testing Data Set for Minimum

Number of Leaves for Random Forest Model (Number of Trees = 240; PC = 4) 55

4.31 Grid Search PCA Training Execution Time (ms) for Minimum Number of

Leaves for Random Forest Model (Number of Trees = 240; PC = 4) 56

4.32 Grid Search PCA Execution Time (ms) on Testing Data Set for Minimum

Number of Leaves for Random Forest Model (Number of Trees = 240; PC = 4) 57

4.33 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC =

4, Number of Trees = 100, Min. Sample Leaf Size = 4) 58

4.34 Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.846, PC =

4, Number of Trees = 240, Min. Sample Leaf Size = 4) 58

4.35 Grid Search for Optimal Max Depth (Number of Trees = 100; PC = 4; Min.

Sample Leaf Size = 4)) . 60

4.36 Grid Search Model Training Execution Time (ms) for Max Depth for Random

Forest Model (Number of Trees = 100; PC = 4; Min. Sample Leaf = 4) . . . 60

xi California State University, Los Angeles

J.Nguyen

4.37 Grid Search Model Execution Time (ms) on Testing Data Set for Max Depth

for Random Forest Model (Number of Trees = 100; PC = 4; Min. Sample

Leaf = 4) . 61

4.38 Grid Search PCA Training Execution Time (ms) for Max Depth for Random

Forest Model (Number of Trees = 100; PC = 4; Min. Sample Leaf = 4) . . . 62

4.39 Grid Search PCA Execution Time (ms) on Testing Data Set for Max Depth

for Random Forest Model (Number of Trees = 100; PC = 4; Min. Sample

Leaf = 4) . 63

4.40 Confusion Matrix for SVM before PCA (Accuracy = 0.69, kernel = rbf,

gamma = auto) . 65

4.41 Grid Search for Optimal PC for SVM Model (kernel = rbf, gamma = auto) . 66

4.42 Confusion Matrix for SVM after PCA (Accuracy = 0.769, PC = 8, kernel =

rbf, gamma = auto) . 66

4.43 Confusion Matrix for SVM after PCA (Accuracy = 0.808, PC = 12, kernel =

rbf, gamma = auto) . 67

4.44 Confusion Matrix for SVM after PCA (Accuracy = 0.788, PC = 16, kernel =

rbf, gamma = auto) . 67

4.45 Confusion Matrix for SVM after PCA (Accuracy = 0.808, PC = 20, kernel =

rbf, gamma = auto) . 68

4.46 Confusion Matrix for SVM after PCA (Accuracy = 0.808, PC = 24, kernel =

rbf, gamma = auto) . 68

4.47 Grid Search Model Training Execution Time (ms) for Optimal PC for SVM

(kernel = rbf, gamma = auto) . 68

4.48 Grid Search Model Execution Time (ms) on Testing Data Set for Optimal PC

for SVM (kernel = rbf, gamma = auto) . 69

4.49 Grid Search PCA Training Execution Time (ms) for Optimal PC for SVM

(kernel = rbf, gamma = auto) . 70

xii California State University, Los Angeles

J.Nguyen

4.50 Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal PC

for SVM (kernel = rbf, gamma = auto) . 71

4.51 Grid Search for Optimal Kernel . 73

4.52 Confusion Matrix for SVM after PCA (Accuracy = 0.846, PC = 20, kernel =

poly, gamma = auto, degree = 3) . 73

4.53 Grid Search Model Training Execution Time (ms) for Optimal Kernel for

SVM (PC = 20, gamma = auto) . 74

4.54 Grid Search Model Execution Time (ms) on Testing Data Set for Optimal

Kernel for SVM (PC = 20, gamma = auto) 74

4.55 Grid Search PCA Training Execution Time (ms) for Optimal Kernel for SVM

(PC = 20, gamma = auto) . 74

4.56 Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal

Kernel for SVM (PC = 20, gamma = auto) 74

4.57 Grid Search for Optimal Degree for Polynomial Kernel (PC = 20) 75

4.58 Grid Search for Optimal Gamma Value for Polynomial Kernel (PC = 20,

kernel = poly, degree = 3) . 77

4.59 Confusion Matrix for SVM after PCA (Accuracy = 0.846, PC = 20, kernel =

poly, degree = 3, gamma = scale) . 77

4.60 Grid Search Model Training Execution Time (ms) for Optimal Kernel Coeffi-

cient (gamma) for SVM (PC = 20, kernel = polynomial, degree = 3) 77

4.61 Grid Search Model Execution Time (ms) on Testing Data Set for Optimal

Kernel Coefficient (gamma) for SVM (PC = 20, kernel = polynomial, degree

= 3) . 77

4.62 Grid Search PCA Training Execution Time (ms) for Optimal Kernel Coeffi-

cient (gamma) for SVM (PC = 20, kernel = polynomial, degree = 3) 77

xiii California State University, Los Angeles

J.Nguyen

4.63 Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal

Kernel Coefficient (gamma) for SVM (PC = 20, kernel = polynomial, degree

= 3) . 78

4.64 Random Forest and SVM Evaluation Parameters 79

4.65 Optimal Random Forest Hyperparameters 79

4.66 Optimal SVM Hyperparameters . 79

xiv California State University, Los Angeles

List of Figures

1.1 Training workflow for the proposed classification model pipeline. 6

2.1 Training workflow for pre-processing . 8

2.2 Example of 6 Signers from How2Sign Dataset [7]. 8

2.3 Example of Data Augmented Images (Rotated) on Image from How2Sign

Dataset [7]. 9

2.4 Example of Data Augmented Images (Resized) on Image from How2Sign

Dataset [7]. 10

2.5 Example of Data Augmented Images (Horizontal Shifting) on Image from

How2Sign Dataset [7]. 11

2.6 Example of Data Augmented Images (Vertical Shifting) on Image from How2Sign

Dataset [7]. 12

2.7 AS (Left) vs ST (Right) from How2Sign Dataset [7]. 13

2.8 Raw Data from Dlib Library [7]. 16

2.9 Example of Angle Calculation using the Red Point as the Origin on Image

from How2Sign Dataset [7]. 17

3.1 Training workflow for the proposed classification model pipeline. 19

3.2 Pairwise Relationship for 4 PC . 29

4.1 PC VS. Accuracy for Random Forest Tree 34

4.2 PC VS Average Time (ms) for Random Forest Tree Model on Training Data 36

4.3 PC VS Average Time (ms) for Random Forest Tree Model on Testing Data . 37

xv

J.Nguyen

4.4 PC VS Average Time (ms) for PCA on Training Data 38

4.5 PC VS Average Time (ms) for PCA on Testing Data 39

4.6 Trees vs Accuracy . 42

4.7 Tree VS Average Time (ms) for Random Forest Tree Model on Training Data 45

4.8 Tree VS Average Time (ms) for Random Forest Tree Model on Testing Data 47

4.9 Tree VS Average Time (ms) for PCA on Training Data 48

4.10 Tree VS Average Time (ms) for PCA on Testing Data 49

4.11 Minimum Sample Leaf Size VS. Accuracy for Number of Trees = 100 50

4.12 Minimum Sample Leaf VS. Accuracy Number of Trees = 240 51

4.13 Leaf VS Average Time (ms) for Random Forest Tree Model on Training Data

(for Tree = 100; PC =4) . 52

4.14 Leaf VS Average Time (ms) for Random Forest Tree Model on Testing Data

(for Tree = 100) . 53

4.15 Leaf VS Average Time (ms) for PCA on Training Data (for Tree = 100) . . 54

4.16 Leaf VS Average Time (ms) for PCA on Testing Data (for Tree = 100) . . . 55

4.17 Leaf VS Average Time (ms) for Random Forest Tree Model on Training Data

(for Tree = 240) . 56

4.18 Leaf VS Average Time (ms) for Random Forest Tree Model on Testing Data

(for Tree = 240) . 57

4.19 Leaf VS Average Time (ms) for PCA on Training Data (for Tree = 240) . . 58

4.20 Leaf VS Average Time (ms) for PCA on Testing Data (for Tree = 240) . . . 59

4.21 Depth VS Average Time (ms) for Random Forest Tree Model on Training

Data (Number of Trees = 100; PC = 4; Min. Sample Leaf = 4) 61

4.22 Depth VS Average Time (ms) for Random Forest Tree Model on Testing Data

(Number of Trees = 100; PC = 4; Min. Sample Leaf = 4) 62

4.23 Depth VS Average Time (ms) for PCA on Training Data ((Number of Trees

= 100; PC = 4; Min. Sample Leaf = 4) . 63

xvi California State University, Los Angeles

J.Nguyen

4.24 Depth VS Average Time (ms) for PCA on Testing Data (Number of Trees =

100; PC = 4; Min. Sample Leaf = 4) . 64

4.25 PC VS. Accuracy for SVM . 67

4.26 PC VS Average Time (ms) for SVM on Training Data 69

4.27 PC VS Average Time (ms) for SVM on Testing Data 70

4.28 PC VS Average Time (ms) for PCA on Training Data 71

4.29 PC VS Average Time (ms) for PCA on Testing Data 72

4.30 Kernel VS. Accuracy for SVM . 73

4.31 Degree of Polynomial VS. Accuracy . 76

4.32 Test Image ID 1 . 81

4.33 Test Image ID 12 . 81

4.34 Test Image ID 25 . 82

4.35 Test Image ID 44 . 82

4.36 Test Image ID 33 . 83

xvii California State University, Los Angeles

CHAPTER 1

Introduction

The task of creating real time ASL interpreting models have been proven to be quite

difficult due to the dynamic nature of ASL. A majority of past ASL interpreting models have

been primarily based on hand gestures and work by tracking the joints of the user’s hands

[28], [27], [32]. However, ASL syntax also considers the user’s facial expressions as a way of

determining meaning. While these models are robust enough to interpret individual signs,

there is lacking performance when it comes to more complex structures such as sentences.

We propose a new way to quantify facial expressions and a new model to preclassify ASL

sentences to be used in conjunction with these current ASL vocabulary interpreting models.

We aim to ensure that the classification model is computational efficient so it can be used

on embedded devices and smart devices that have less computational power than a typical

desktop.

For our project, we propose utilizing the random forest tree classifier and the support

vector machine (SVM) classifier models to build the preclassification model. These models

would be trained on facial angles derived using simple trigonometric calculations. Fur-

thermore, to minimize the amount of computational power needed to run this model, we

implement principal component analysis (PCA) to reduce dimensionality in the number of

features used to train the models.

1

J.Nguyen

1.1 Background

American Sign Language (ASL) is utilized by the deaf community as its primary mode

of communication. However, deaf and hard of hearing individuals are often at risk for

receiving inadequate treatment especially in healthcare due to communication barriers in a

hearing centric society. Even though federal laws mandate hospitals to provide interpreters,

a majority of hospitals opt to use web-based video remote interpreting (VRI), which causes

problems with communication between hearing physicians and hard of hearing patients due

to issues such as poor video call quality, and lack of space in more crowded hospitals for

the patient to sign and see the interpreter [12]. The poor quality of VRI services can

be problematic, especially in emergencies where the patient needs immediate care. Thus,

ongoing research in accurate, real time ASL interpreting models is vital, however progress

towards it is lacking.

1.2 ASL Syntax

ASL has its own unique linguistic structure and rules that dictate the meaning of individ-

ual signs and how to construct certain sentences. For instances, individual sign meaning and

sentence formation is determined by five parameters: hand shape, palm orientation, facial

expression, movement, and location relative to the body [3]. Letters and individual words

tend to relay more on the first 4 parameters to distinguish its meaning. For example, the

sign for ”key” and the sign for ”apple” utilizes the same hand shape, but the differentiating

factor is the placement of the hand relative to the face and body of the signer. On the other

hand, facial expressions play a crucial role in distinguishing the different types of sentences,

especially in the case of asking a question where raising and lowering the eyebrows indicate

different types of questions. There are 8 sentence types present in the ASL language: asser-

tion, negation, rhetorical/statement, topic, What/Where/When/Why/How question, and

Yes/No question [19].

2 California State University, Los Angeles

J.Nguyen

1.3 Current ASL Models based on Hand Gesture

A majority of current ASL interpreting models are essentially based on a signer’s hand

shape. These models perform ideally at isolating sign meanings, but this often leads to a

limited set of signs that the model can interpret ([34], [30]). Furthermore, these models

perform poorly on more complex structures such as sentences and questions because the

model is aimed towards interpreting individual signs instead of interpreting the meaning

of entire sentences or questions. In cases where sentences have the same hand gestures

but different meanings, the only way to differentiate these sentences is by facial cues. For

example, ”Are you hungry?” and ”You are hungry” have the same hand gestures done in the

same sequence and the only way to differentiate the two sentences is by raising eyebrows to

indicate a yes or no question [19]. Thus the lack of integrating facial expression recognition

can cause poor performance in more complex structures.

1.4 Other Works in Facial Expression in ASL Inter-

preting Models

Other ASL interpreting models based on facial expressions suggest there is potential in

improving real time ASL interpreting integrating facial expressions, but the work in this

field is limited due to the difficult task of tracking the dynamics of the subject’s constantly

changing facial expressions and the potential loss of information from obstruction of the

signer’s hands. Volger et al. addresses this problem by developing a 3D deformable model

tracking system for the purpose of tracking faces of signers while they are signing in a video

[33]. However, this model requires time-consuming preprocessing of data before a model

can be created. Another approach is to determine points on the subjects’ face and classify

types of ASL signs based on that. Nguyen et al. developed a complex algorithm where

21 facial points of a subject’s face was determined and tracked by probabilistic principal

3 California State University, Los Angeles

J.Nguyen

component analysis and the results of the tracking were classified using a system based on

Hidden Markov Models and another one based on a support vector machine [19]. While this

model performs well, it is computationally expensive and time consuming to train and run

due to its complex calculations.

1.5 Random Forest Classification Tree Model

The random forest classification tree model is a popular machine learning model that has

been used for various classification applications. The model works by creating a forest of

”decision trees” that act like an ensemble. Each tree will vote on what to classify the sample

and the majority vote will be the final classification of the sample [4]. Each tree will have

a set number of nodes and each node will have a set number of branches or choices that is

determined by the hyperparameters of the model. At every node, the features that are taken

into account are randomly chosen from a subset of features, a technique known as bagging.

This is done because each tree is sensitive to the training data, and thus bagging is done

to lower the variance from the sensitivity of each tree [4]. Furthermore, this ensures that

each tree has low correlation with each other which will reduce the chance of overfitting the

model to the training data set. The tree will continue to create new nodes until a decision

is reached or until a max depth is achieved if the tree is limited to a max depth.

1.6 Support Vector Machine

The support vector machine (SVM) model is another popular machine learning model

commonly used for classification purposes. The SVM model works by separating the patterns

and observations between classes. It does this by finding the hyperplane that will separate

the features of an N dimensional space where N is the number of features and maximize the

distance between the hyperplane and the classes. This model works really well in cases where

the number of features is significantly larger than the number of sample cases [23]. SVM

4 California State University, Los Angeles

J.Nguyen

maximizes the hyperplane by minimizing the cost or in this case, the hinge loss function,

which indicates how well the hyperplane differentiates the features present in the classes in

the dataset.

1.7 Principal Component Analysis (PCA)

A key goal in training and testing these models is to keep run time low and utilize the

least amount of computational power. One way to achieve this is to implement principal

component analysis (PCA) to reduce redundant data. PCA is an mathematical technique

used to reduce the dimensionality in data sets to a smaller number of dimensions called

principal components (PC). In other words, PCA will transform the current data set to a

new coordinate system that will have less variation while maintaining the most amount of

information that can be extract from the data set. This new coordinate system’s axes are

the calculated PC. The number of PCs calculate is determined based on how well the model

performs [31].

1.8 General Proposed Pipeline

The proposed pipeline is shown in the block diagram in Fig. 1.1. The pipeline is essen-

tially split into 3 parts: facial feature extraction, classification model pipeline, and testing.

During the facial feature extraction, frames from the training videos are extracted and un-

dergo data augmentation. Then, we utilized a Python library to detect and extract key facial

points that will be converted into angles and used for the classification model pipeline. The

classification model pipeline includes reducing the dimensionality into PCs using PCA before

using the newly calculated PCs to train the models. In this project, we used the random

forest tree classifier and the SVM to classify the videos based on facial angles. Lastly, the

model is tested using the remaining videos and its performance is evaluated according to its

accuracy, confusion matrix, and execution time.

5 California State University, Los Angeles

J.Nguyen

Fig. 1.1 – Training workflow for the proposed classification model pipeline.

6 California State University, Los Angeles

CHAPTER 2

Facial Feature Extraction

2.1 Introduction

The goal of this project is to determine a computationally efficient way to preclassify

sentences based on facial expressions. To do so, we need to figure out a way to quantify such

facial cues so that it can be used to train a classification model. Other ASL interpreting

models based on facial expressions have proposed different ways to quantify the facial clues

present in ASL, but the proposed algorithm is often computationally expensive due to the

difficult task of tracking the dynamics of the subject’s constantly changing facial expressions

and the potential loss of information from obstruction of the signer’s hands. Volger et al.

addresses this problem by developing a 3D deformable model tracking system for the purpose

of tracking faces of signers while they are signing in a video [33]. However, this model requires

time-consuming preprocessing of data before a model can be created. Another approach is

to determine points on the subjects’ face and classify types of ASL signs based on that.

Nguyen et al. developed a complex algorithm where 21 facial points of a subject’s face was

determined and tracked by probabilistic principal component analysis and the results of the

tracking were classified using a system based on Hidden Markov Models and another one

based on a support vector machine [19]. While this model performs well, it is computationally

7

J.Nguyen

expensive and time consuming to train and run due to its complex calculations. We propose

a computationally efficient facial landmark tracking approach using the Dlib library.

Fig. 2.1 – Training workflow for pre-processing

2.2 Data Set

Fig. 2.2 – Example of 6 Signers from How2Sign Dataset [7].

For this project, we need to find an appropriate data set that has videos of signers that

are signing complete sentences. One of the main reasons for the delay in the progression

towards integrating facial clues into ASL interpreting models is that a majority of publicly

available data sets for ASL consist of mostly the alphabet and individual words. The dataset

we ended up using for this project was the How2Sign data set [7], since it is one of the few

publicly available data sets where the user is signing complete sentences. We used a total

of 173 videos from this dataset of subjects signing sentences in ASL, where 121 videos were

used for training and 52 videos were used for testing. There was a total of 6 signers that

8 California State University, Los Angeles

J.Nguyen

Fig. 2.3 – Example of Data Augmented Images (Rotated) on Image from How2Sign Dataset
[7].

were native or professional ASL users and were a mixture of deaf, hard of hearing, and

professional ASL interpreters. These signers were predominantly right handed.

The videos were classified into assertions (AS) and statements (ST). Assertions are consid-

ered sentences where the signer declared an action will occur while statements are sentences

stating a fact. For every video, we extracted the frame at 0.3, 0.5 and 0.75 time stamp of

the videos to be used for training and testing. Upon further inspection, we chose to solely

use the midpoint frame for both training and testing because the grammatical markers that

differentiate AS and ST sentences are usually found towards the latter part of a signed sen-

tence [3]. Furthermore, frames taken too early and too late often did not offer any sort of

facial clues that can be used to distinguish the different types of sentences as the meaning

of the sentence is usually conveyed towards the middle of the sentence.

To increase the amount of training data used for this project, we applied data augmen-

tation methods to the training data set. Such augmentation methods included rotation,

9 California State University, Los Angeles

J.Nguyen

Fig. 2.4 – Example of Data Augmented Images (Resized) on Image from How2Sign Dataset
[7].

vertical shifting, horizontal shifting, and resizing. The degree of rotation, shifting and resiz-

ing were randomly chosen by the ”ImageGenerator” function from the sklearn library. The

data augmentation methods resulted in 3660 images and were all used for training. Testing

was done on the remaining 53 videos and these frames were not augmented in any way.

2.3 Dlib Library

To calculate the facial points used for classification, we utilized the facial landmark

detector and predictor from the Dlib library [15] to detect the faces of the subjects and track

key facial points. First, we need to detect and localize the subjects’ faces before extracting

facial points. To do so, we used the get frontal face detector function from the Dlib library

which creates a facial detector that was developed using Histogram of Oriented Gradients

(HOG) and Linear SVM classifier in conjunction with a image pyramid and sliding window

10 California State University, Los Angeles

J.Nguyen

Fig. 2.5 – Example of Data Augmented Images (Horizontal Shifting) on Image from
How2Sign Dataset [7].

method [37] to detect the subjects’ faces before extracting key facial points.

After detecting the face, we used the shape predictor function based on the landmark

estimator algorithm proposed by Vahid et al. [14] and trained on the iBUG 300-W facial

landmark dataset [26] to determine the location of certain facial points on the subject’s face.

This function outputs 68 coordinates with the origin being at the top left of the image.

In Listing 2.1, we implement the 2 functions that we use to extract the facial points of

each image. We begin by creating a detector object using the Dlib library to detect the face,

then within the for loop we run the predictor function so that it can extract the 68 facial

points. At every iteration of the for loop, the predictor determines one of the facial points,

thus there is a total of 68 iterations done per image.

11 California State University, Los Angeles

J.Nguyen

Fig. 2.6 – Example of Data Augmented Images (Vertical Shifting) on Image from How2Sign
Dataset [7].

def run d l ib mode l (s e l f) :

’ ’ ’

Runs the model on gray s c a l e image .

’ ’ ’

r e c t s = s e l f . d e t e c t o r (s e l f . gray)

for (i , r e c t) in enumerate (r e c t s) :

coor = s e l f . p r ed i c t o r (s e l f . gray , r e c t)

s e l f . coor = f a c e u t i l s . shape to np (coor)

Listing 2.1 – Implementing dlib landmark tracking.

12 California State University, Los Angeles

J.Nguyen

Fig. 2.7 – AS (Left) vs ST (Right) from How2Sign Dataset [7].

2.4 Changing Origin

After determining facial points, we calculate the feature vectors and angles using the

output of shape predictor. Before starting angle calculations, the coordinate system of the

facial points needs to be changed to account for any possible movement of the user. The

current origin is at the top left corner of the image and the frame of reference is the entire

frame of the video. If the origin is not changed, then the vectors will be affected by the

location of the user within the frame and will not be solely based on the user’s face. Thus

we change the coordinate system to have the origin to be at one of the facial points, so it

would be a global coordinate system where the frame of reference is the user’s face.

The point at the center of the subject’s chin (the red point in Figure 2.8) is chosen to be

the origin and all the other points is converted to the new origin’s coordinate system before

further calculations is done. The point at the chin is chosen because it would result in the

largest angles when undergoing angle calculations. After changing the origin, the 68 original

points is reduced to 67 points.

13 California State University, Los Angeles

J.Nguyen

def g e t r e l a t i v e c o o r d i n a t e (s e l f) −> np . ndarray :

’ ’ ’

Se t s the s e l e c t e d coord ina te to be the o r i g i n and

c a l c u l a t e s the o ther coord ina t e s wrt to the new o r i g i n .

’ ’ ’

o r i g i n = s e l f . coor [s e l f . o r i g i n]

dim = np . shape (s e l f . coor)

ones = np . ones ([dim [0] , 1])

x o r i g i n = o r i g i n [0]

y o r i g i n = o r i g i n [1]

x o r i g i n l i s t = ones ∗ x o r i g i n

y o r i g i n l i s t = ones ∗ y o r i g i n

s e l f . x r e l a t i v e c o o r = s e l f . x coor − x o r i g i n l i s t

s e l f . y r e l a t i v e c o o r = y o r i g i n l i s t −s e l f . y coor

s e l f . r e l a t i v e c o o r = np . array ([[x [0] , y [0]] for x , y in

zip (s e l f . x r e l a t i v e c o o r , s e l f . y r e l a t i v e c o o r)])

Listing 2.2 – Changing the origin to one of the 68 facial points Dlib outputted.

2.5 Angle Calculation

Due to the inconsistencies in distances between the points from factors such as recording

camera angle and differing subject’s face sizes, we cannot consider the vectors alone and

convert the vectors to angles using the following equation:

θi = arccos
x0 − xi√

(x0 − xi)2 + (y0 − yi)2
(2.1)

where i is the ith point and (x0, y0) is the red point on Figure 2.8. Using angles ensures

that factors such as inconsistencies in the subjects faces or rotation done by the subject

14 California State University, Los Angeles

J.Nguyen

during the video do not affect the model. Every image resulted in 67 angles that is later on

reduced to principal components.

def c a l c u l a t e a n g l e (s e l f) :

’ ’ ’

Ca l cu l a t e s the magnitude and ang l e o f each po in t

’ ’ ’

x = s e l f . r e l a t i v e c o o r [: , 0]

y = s e l f . r e l a t i v e c o o r [: , 1]

squared x = np . square (x)

squared y = np . square (y)

s e l f .mag = np . sq r t (squared x+squared y)

i n s i d e = y/ s e l f .mag

s e l f . ang le = np . a r c co s (i n s i d e)

Listing 2.3 – Implementing angle calculation.

15 California State University, Los Angeles

J.Nguyen

Fig. 2.8 – Raw Data from Dlib Library [7].

16 California State University, Los Angeles

J.Nguyen

Fig. 2.9 – Example of Angle Calculation using the Red Point as the Origin on Image from
How2Sign Dataset [7].

17 California State University, Los Angeles

CHAPTER 3

Classification Model Pipeline

3.1 Introduction

After quantifying the facial expressions of each video, we can begin training a classification

model aimed towards classifying the sentence type of the sentence being signed. To begin

training a model, the data set is split into a training and testing subset, where the training

set undergoes data augmentation to increase its size and the testing set is left untouched

until after the model is trained and is ready to be tested. Before starting the training phase,

PCA is performed to reduce dimensionality while maintaining performance. During the

training phase (see Figure 3.1), the models undergo the typical training and tuning of its

hyperparameters. To do so, both models are implemented using functions available in the

sklearn library and are further tuned according to a grid search. Each model has different

hyperparameters that need to be adjusted and optimized while also considering the time it

takes to train and test each model.

3.2 Reducing Redundant Data

A key goal in this project is to keep computational power consumption low and one

way to do so is to reduce the redundant data present. The balance between minimizing

18

J.Nguyen

Fig. 3.1 – Training workflow for the proposed classification model pipeline.

computational power consumption and maximizing performance can be effected by how

much data is used to train and test the model. Ideally, we would remove most of the

redundant data while maintaining the information the data set provides. For this project,

we remove redundant data by implementing PCA.

3.2.1 Reducing Dimensions using Averaging

We also try implementing averaging as a way to reduce dimensionalty. This consist of

selecting key facial areas and calculating the average distance of a group of points that

defined that key facial area and using that for angle calculations. We chose the 2 eyebrows,

the nose and the mouth as key facial areas. Each eyebrow has 5 key points. The nose

has 4 and the mouth had 25 key points. Each set of points was averaged out, resulting in

4 averaged distances. These were used in angle calculation and then the newly calculated

angles were used to train the Random Forest classifier. This method resulted in terrible

accuracies. The accuracies calculated ended up being under 0.5, which is worse than letting

chance classify the 2 classes. Various combinations of different points for each key facial

areas also resulted in poor performance. Thus, we choose to explore PCA as another option

to reduce dimensionality.

19 California State University, Los Angeles

J.Nguyen

3.2.2 Principal Component Analysis (PCA)

As discussed above, we utilize PCA to reduce the number of features used to train and

test the model. We implement PCA using the sklearn library [31] and perform PCA on both

the training and testing data sets. This is because both data sets need to have the same

number of features. One parameter of the PCA function within sklearn is the number of

PCs the algorithm is suppose to reduce the current data set. The possible choices for the

number of PCs is 1 until the total number of features minus 1 [22]. The number of PCs to

be calculate was determined through a grid search process, where a variety of numbers for

PCs was calculated and the one that produced the best results was kept.

3.3 Preliminary Classifiers Results

To begin deciding which classifying algorithm is the most appropriate for this, we exam-

ine the accuracy of various models that are already built into sklearn [22] to see which ones

performed the best before dimensionality reduction. As seen in Table 3.1, the top 3 perform-

ing classifiers were the KNeighbors Classifier, Linear SVC, and NuSVC. The Decision Tree

classifier, Random Forest Classifier, and AdaBoost Classifier also look promising since their

accuracies are roughly close to 0.8. At first glance, the best choice seems to be KNeighbors

Classifiers, most facial classifiers and facial classification in ASL uses the SVM ([20], [16],

[1], and [19]) and Random Forest classifiers ([17], [35], and[14]). Furthermore, amongst the

top performing classifiers, the Linear SVC and NuSVC are types of SVM algorithms and the

Decision Tree Classifier and Random Forest Tree Classifier exhibit the potential of utilizing

decision trees. Thus, we choose the Random Forest and SVM classifiers as our algorithms

for this project.

20 California State University, Los Angeles

J.Nguyen

Classifier Accuracy

KNeighbors Classifier 0.865

Linear SVC 0.846

NuSVC 0.808

Decision Tree Classifier 0.788

Random Forest Classifier 0.788

AdaBoost Classifier 0.788

Gradient Boosting Classifier 0.769

Gaussian NB 0.519

Linear Discriminant Analysis 0.615

Quadratic Discriminant Analysis 0.731

Table 3.1 – Grid Search for Optimal PC for Random Forest Model (Number of Trees = 200,
Min. Sample Leaf Size = 5)

3.4 Random Forest Classification

The random forest classifier is a model that essentially creates a forest of decision trees

that vote on a final classification. The number of trees and the number of nodes and branches

each tree are factors that can affect the performance and execution time of the model. The

more trees the forest has the longer it would take for the model to make a decision on a

subject, because there is more trees to cast a vote on the final decision. On the flip side, the

more trees there are, the more likely the final classification would be correct. Furthermore,

each tree will have a set number of branches and nodes that it uses to make a decision

and the more nodes and branches each tree has the more features the tree has to classify

each subject. However, this can also slow down execution time, since the more nodes and

branches each tree has, the longer each tree will take to make a decision. All 3 of these factors

is dependent on the hyperparameters of the model. Thus, we need to take into account the

21 California State University, Los Angeles

J.Nguyen

these factors when deciding on the hyperparameters that will result in the fastest execution

time while maintaining performance.

3.4.1 Code Implementation

We implement the random forest classifier algorithm using the ”RandomForestClassifier”

function from the sklearn library [22]. The function we created to run the algorithm is shown

in List 3.1. The ”RandomForestClassifier” function has 3 hyperparameters that we needed to

determine. Our initial parameter to consider is the n estimator parameter which indicates

how many trees will be in our forest. As discussed above the number of trees can affect

how long it takes to execute the whole process, but the more trees there are the better the

prediction. The next parameter we need to set is the min samples leaf and this determines

the minimum samples at each node of a tree [22]. The last parameter we need to determine is

the max depth parameter that controls the size of each tree and how many levels of decisions

a tree can create [22]. The rest of the hyperparameters were set to the defaulted values,

since the default values often result in decent results [8].

22 California State University, Los Angeles

J.Nguyen

def random forest model (s e l f) :

’ ’ ’

Runs random f o r e s t model on inpu t t ed data and c a l c u l a t e s

accuracy and confus ion matrix us ing s k l e a rn a l go r i t hms .

’ ’ ’

c l f = RandomForestClass i f i e r (n e s t imato r s=s e l f . n e s t imator s ,

max features=” sq r t ” , random state=0,

min samp l e s l ea f = s e l f . s amp l e s l e a f , max depth = s e l f . depth)

c l f . f i t (s e l f . x t ra in aug , s e l f . y t r a i n aug)

c l f . s c o r e (s e l f . x t ra in aug , s e l f . y t r a i n aug)

s e l f . y pred = c l f . p r ed i c t (s e l f . x t e s t)

s e l f . accuracy = metr i c s . a c cu ra cy s co r e (s e l f . y t e s t ,

s e l f . y pred)

s e l f . con fu s i on = con fus i on mat r ix (s e l f . y t e s t , s e l f . y pred)

s e l f . confus ion norm = con fus i on mat r ix (s e l f . y t e s t ,

s e l f . y pred , normal ize = ” a l l ”)

s e l f . r epo r t = c l a s s i f i c a t i o n r e p o r t (s e l f . y t e s t , s e l f . y pred)

Listing 3.1 – Implementing random forest classifier using sklearn.

3.4.2 Hyperparameters

We focus on 3 hyperparameters of the random forest tree classifier: the number of trees,

the minimum sample leaf size and the max depth. A key property of the random forest tree

classifier is that the ensemble of the trees in the model are diverse. The more diverse the

trees are the better, because the diversity in the trees the lowers the likelihood of having

duplicate trees [25] which leads to overfitting [29]. The diversity of the forest is affected by

these 3 parameters, however as discussed before, if these parameters are too large, then it

23 California State University, Los Angeles

J.Nguyen

would slow down the algorithm, Thus, we need to fully understand the importance of each

parameter to determine its optimal value.

The first parameter, n estimator, determines the number of trees the ensemble will consist

of. Choosing an appropriate value for this parameter is important because the number of

trees can affect different aspects of the model including execution time, possibility of over

fitting, accuracy and more [4]. An advantage to having multiple trees is that the mistake

of one tree can be compensated by other trees [25], thus having multiple trees is beneficial.

However, having multiple trees can slow down the model. Thus, we need to determine the

optimal number of trees that can ensure no one tree dominates the overall decision and keep

execution time low.

The parameter, min samples leaf, determines the minimum samples in each leaf node.

In other words, it sets a minimum size for each leaf so that when a node splits, if the child

node is smaller than the minimum, the node does not continue to split and stops here. Since

each tree uses a different training data subset to increase diversity [24], the leaf size can also

contribute to the diversity of each tree by creating leaves per tree. The more splits there

are, the more diverse the tree but the longer it takes to produce one tree decision. Thus, we

need to ensure that the value we chose for this sample allows for enough nodes to be split

to ensure diversity amongst the trees while maintaining a low execution time.

The last parameter we focus on is the max depth which determines how many levels each

tree can have. Traditional random forest tress usually allows the tree to keep constructing

until the maximum level is reached, however there has been research that suggest bounding

the maximum level and decreasing the size of each tree can result in a higher accuracy and

prevent overfitting [18]. Furthermore, having smaller trees can decrease execution times by

requiring less computational power. Thereby, we need to find an appropriate max depth

that will allow for optimal performance while maintaining low computational cost.

24 California State University, Los Angeles

J.Nguyen

3.5 Support Vector Machine

The SVM model works by finding the hyper plane that will separate classes and maxi-

mize the distance between the hyper plane and the classes; in this project, it works to find

the hyperplane separating AS and ST using the angles calculated. To do so, it must de-

termine the relationship between the 2 classes (i.e. linear VS. nonlinear relationship) and

find the appropriate kernel to represent this relationship. This feature selection method is

considered an embedded method and is known for its computational efficiency and can help

prevent overfitting [23]. One way to determine the relationship between classes is to plot a

pair plot using the seaborn library [36]. This function will plot each feature pairwise, allow-

ing one to visualize the relationship between features, and help in finding out the optimal

hyperparameters.

3.5.1 Code Implementation

We use the SVC (support vector classifier) function from the sklearn library [22]. We

created the function in Listing 3.2 to implement the pipeline to run the SVM algorithm

from sklearn. The two parameters we focus on here is the kernel and gamma. The kernel

parameter refers to the kernel type used to determine the hyper plane that would maximize

the distance between the 2 classes. The gamma parameter sets the coefficient of the kernel

to 1
nfeatures

, where nfeatures is the number of features used to train the model [22]. These 2

parameters are determined by analyzing the type of relationship between the 2 classes.

25 California State University, Los Angeles

J.Nguyen

def SVM(s e l f) :

’ ’ ’

Runs SVM on inpu t t ed data and c a l c u l a t e s accuracy and

confus ion matrix us ing s k l e a rn a l go r i t hms .

’ ’ ’

c l f = make p ipe l ine (StandardSca ler () , SVC(gamma=’ auto ’ ,

k e rne l = ”poly ”))

c l f . f i t (s e l f . x t ra in aug , s e l f . y t r a i n aug)

c l f . s c o r e (s e l f . x t ra in aug , s e l f . y t r a i n aug)

s e l f . y pred = c l f . p r ed i c t (s e l f . x t e s t)

s e l f . accuracy = metr i c s . a c cu ra cy s co r e (s e l f . y t e s t ,

s e l f . y pred)

s e l f . con fu s i on = con fus i on mat r ix (s e l f . y t e s t , s e l f . y pred)

s e l f . confus ion norm = con fus i on mat r ix (s e l f . y t e s t ,

s e l f . y pred , normal ize = ” a l l ”)

s e l f . r epo r t = c l a s s i f i c a t i o n r e p o r t (s e l f . y t e s t , s e l f . y pred)

Listing 3.2 – Implementing SVM using sklearn.

3.5.2 Hyperparameters

A key hyperparameter of the SVC function is the kernel parameter. Within the sklearn

library, this parameter can hold 5 different values: linear, polynomial, radial basis function

(rbf), sigmoid, and precomputed [22]. Each kernel corresponds with a different type of

separation boundary between the classes and has been proven to drastically change the

results for various applications ([5], [21], [10]). One way to visualize the type of separation

boundary the 2 classes have is by plotting the pairwise relationship of the 67 angles. As

shown in Fig. 3.2, the 2 classes tend to overlap quite a bit even after performing PCA. This

26 California State University, Los Angeles

J.Nguyen

is problematic as the SVM algorithm works to find a hyperplane to separate the classes and

if there is no separation, the model would be expected to perform poorly. However, the type

of kernel used in the SVM algorithm can alleviate this problem and can handle more complex

relationships between features such as non linearity [13]. We consider the linear, polynomial,

sigmoid and rbf as possible choices for the kernel parameter since the precomputed input

requires us to create our own kernel.

The linear kernel is usually used for data that is linearly separable. This kernel is the

simplest one out of the 4 possible kernel sources and performs the best when there is many

features present with a linear relationship [6]. In other works where the authors tested and

compared different kernels to see which one performed the best on the same data sets, the

linear kernel has been proven to work the best with lung cancer datasets [10] and lower back

pain symptoms [13].

The nonlinear kernel handles data that have a nonlinear relationship or in other words

can be modeled a polynomial. Due to its nature, the polynomial kernel tends to have

more parameters to determine than the other kernels we are considering [11]. One of those

parameters is the degree of the polynomial of a nonlinear kernel. We used the sklearn’s

default value which is a polynomial of 3 degrees when performing the grid search for the

optimal parameters.

The rbf kernel is the most commonly used in various applications and is considered

translational invariant [6]. This kernel is a popular choice amongst various applications

because it can handle both the linear and nonlinear cases and in some cases, its parameters

can be altered to behave like other kernels such as the linear, nonlinear and sigmoid kernel

[11]. It has been shown to work the best in such works like termite detection using acoustic

signals[2]

The sigmoid kernel, also known as the the hiperbolic tangent kernel, is more commonly

used in neural networks [6]. Usually sigmoid kernels require more tuning than the typical rbf

kernal, but in some cases where the amount of feature vectors are high or there is a nonlinear

27 California State University, Los Angeles

J.Nguyen

boundary in 2 dimensions, the sigmoid kernel can perform as good or better than the rbf

kernels [9].

28 California State University, Los Angeles

J.Nguyen

Fig. 3.2 – Pairwise Relationship for 4 PC

29 California State University, Los Angeles

CHAPTER 4

Results

We evaluate the performance of the models using 3 metrics: its accuracy, confusion

matrix and the execution time. The accuracy (Eq 4.1) refers to how many videos the model

was able to correctly classify. Since there is only 2 classes, the accuracy if the video is

classified by chance is 0.5. We are aiming for an accuracy of 0.8 or higher. The confusion

matrix offers more details on how the model performed with respect to specific classes. The

confusion matrix lists the true positive rate (TPR), false positive rate (FPR), true negative

rate (TNR), and false negative rate (FNR). In general, we want a model that will maximize

the TPR and TNR while minimizing the FPR and FNR. We aim to have a TPR and TNR

of 0.8 or higher. We find the most optimal combination of PCs and hyperparameters by

analyzing the evaluation metrics we just described. A grid search tends to be more time

consuming, however other methods that optimize parameters through approximations and

more complex mathematical analysis tends to take roughly the same amount of time and the

time it takes to conduct a grid search can be reduced by such methods as parallel processing

[11]. The execution times we examined were the time it took to train the model and test it.

We also look at the time it took to run PCA, since that was done right before training and

testing the model. This is so we can see how fast the model and pca would perform during

the training and testing phase. The entire process was run on Google Colab Pro+ using the

30

J.Nguyen

Intel(R) Xeon(R) CPU @ 2.20GHz.

Accuracy =
TP + TN

TP + TN + FP + FN
(4.1)

TPR =
TP

TP + FN
(4.2)

FPR =
FP

FP + TN
(4.3)

TNR =
TN

TN + FP
(4.4)

FNR =
FN

TP + FN
(4.5)

4.1 Random Forest Classification

To start the gird search process, we set the number of trees to 200, the minimum sample

leaf size to 5 and leave the max depth at the default value until the grid search for that

parameter is done. As shown in Table 4.1, we can improve the performance of the model

further using PCA. Table 4.1 shows the confusion matrix of the model before running PCA.

As seen in the TPR and TNR, there is a bias towards the ST class, since the TPR and

TNR for ST is significantly higher than the AS class. This indicates the model tends to

only correctly classify the ST class. We want a model to correctly classify both classes,

thus we implement PCA to see if we can have a more balanced model. The first step to

implementing PCA is to determine the optimal PC value. After determining the optimal PC

value, we determined the optimal number of trees next, followed by the optimal minimum

sample leaf size and lastly the max depth through the means of a grid search. At each stage

of determining the optimal parameter, we run 10 trials of each parameter set to see the

31 California State University, Los Angeles

J.Nguyen

average execution times.

Class TPR FPR TNR FNR

AS 0.608 0.103 0.897 0.391

ST 0.897 0.391 0.609 0.103

Table 4.1 – Confusion Matrix Random Forest Tree before PCA (Accuracy = 0.769, PC = 0,
Number of Trees = 200, Min. Sample Leaf Size = 5)

4.1.1 PC Grid Search

We begin by finding the optimal PCs that will result in the highest accuracy. To find

the optimal PC, we perform a grid search where we ran the model with different PCs and

we look at the accuracy produced by each PC. We kept the other parameters of the model

constant. Tables 4.2 shows the accuracy that resulted from the PC grid search. The random

forest model n estimators parameter was kept at 200 and the min sample leaf was at 5. We

chose to chosen to look at PC values at intervals of 4 because the accuracy tends to stay

similar to PCs of closer values. Preliminary results show that the accuracy is the highest

when the PC is set to 20. However, there is a possibility that a PC of 20 could have a poor

confusion matrix, so we decided to also analyze the confusion matrix when the PC is 4. Since

it is the smallest number and its accuracy was over 0.8, it potentially offers a better balance

of performance and computational cost.

When further examining the confusion matrix for PC = 20 (Table 4.4), the TPR for the

AS class is below 0.8. We are aiming for the TPR and TNR for both classes to be at least

0.8. Furthermore, usually a larger number PC causes the model to take longer to run as seen

in Table 4.5 where the average execution time to train the model for PC = 4 is faster than

PC = 20. Thus, we try examining the confusion matrix for PC of 4, since it is the smallest

PC that had an accuracy of over 0.8. When looking at the confusion matrix for a PC of 4,

both the TPR and TNR for both classes is over 0.8. Furthermore, there is a better balance

between the TPR and TNR of both classes, indicating there is little bias in the model. Thus,

32 California State University, Los Angeles

J.Nguyen

we choose to use a PC of 4 when continuing onto the grid search for the hyperparameters.

When looking at Table 4.5, 4.7, 4.8, and 4.6, PC = 4 has the best performance while

also being computational efficient. The training execution times for both the model and

PCA indicate that a PC = 4 is faster than PC = 20, however the testing times show that

PC = 20 is faster than PC = 4. This could be due to the fact that the testing data set is

significantly smaller than the training set, and thus when comparing values there is a slight

variation due to the nature of running the program on Google Colab Pro+. When using

Google Colab Pro+, resources are shared amongst users and there is a possibilty that at

that moment there were multiple users utilizing Google Colab resources at the time. The

difference in execution times between PC = 4 and PC = 20 when ran on the testing data

set (Table 4.6 and 4.8) is minuscule, so we used the training execution times to compare the

2. We chose PC = 4 for the rest of the grid searches.

PC Accuracy

4 0.827

8 0.827

12 0.788

16 0.769

20 0.827

24 0.808

28 0.788

Table 4.2 – Grid Search for Optimal PC for Random Forest Model (Number of Trees = 200,
Min. Sample Leaf Size = 5)

33 California State University, Los Angeles

J.Nguyen

Fig. 4.1 – PC VS. Accuracy for Random Forest Tree

Class TPR FPR TNR FNR

AS 0.826 0.172 0.827 0.174

ST 0.828 0.174 0.826 0.172

Table 4.3 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.827, PC = 4,
Number of Trees = 200, Min. Sample Leaf Size = 5)

34 California State University, Los Angeles

J.Nguyen

Class TPR FPR TNR FNR

AS 0.739 0.034 0.966 0.261

ST 0.966 0.261 0.739 0.034

Table 4.4 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC = 20
Number of Trees = 200, Min. Sample Leaf Size = 5)

pc Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

4 1448.13 1426.846 1905.353 1401.402 1417.185 1459.921 1474.254 1415.991 1427.595 1687.23 1506.391

8 1543.208 1543.099 2761.738 1521.554 1504.551 2088.304 1469.94 1482.328 2102.186 1496.72 1751.363

12 1979.312 2494.04 2005.445 1965.914 2057.433 2292.332 1932.043 1959.907 2286.48 1899.733 2087.264

16 2441.773 3088.231 2396.165 2419.143 3348.205 2377.223 2343.828 3275.478 2337.851 2376.554 2640.445

20 3537.033 2439.434 2467.811 3175.573 2441.134 2741.382 3738.071 2472.908 2447.493 2432.638 2789.348

24 2767.104 2497.678 2756.523 2836.428 2470.891 2447.669 3020.397 2452.924 2455.318 3357.313 2706.224

28 3072.987 2977.449 3789.341 2891.961 2897.539 3872.685 3485.908 2897.762 3788.97 2994.46 3266.906

Table 4.5 – Grid Search Model Training Execution Time (ms) for Optimal PC for Random Forest Model (Number
of Trees = 200; Min. Leaf Sample = 5)

pc Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

4 21.737 21.308 29.69 20.78 21.024 30.991 21.801 23.913 35.878 20.532 24.765

8 21.28 23.903 21.102 20.6 26.865 33.468 22.376 21.051 29.17 21.754 24.157

12 21.215 30.286 21.386 20.867 29.117 20.859 21.053 27.903 21.426 20.641 23.475

16 20.754 21.191 21.368 22.131 25.635 21.235 20.057 38.546 21.218 21.916 23.405

20 29.413 22.594 26.361 31.291 21.275 21.224 29.509 20.628 19.847 21.593 24.373

24 22.317 21.717 30.52 21.317 20.563 21.942 20.369 20.154 21.903 36.096 23.69

28 21.011 21.26 23.729 20.28 21.497 33.835 19.159 20.664 30.627 23.534 23.56

Table 4.6 – Grid Search Model Execution Time (ms) on Testing Data Set for Optimal PC for Random
Forest Model (Number of Trees = 200; Min. Leaf Sample = 5)

35 California State University, Los Angeles

J.Nguyen

Fig. 4.2 – PC VS Average Time (ms) for Random Forest Tree Model on Training Data

pc Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

4 1.588 1.793 1.678 1.719 1.931 1.877 6.416 1.862 3.022 2.188 2.407

8 2.362 2.476 7.815 3.146 2.592 7.768 2.464 3.069 4.116 2.598 3.841

12 3.081 3.245 3.259 3.293 3.083 5.152 3.169 2.824 8.982 3.125 3.921

16 3.813 17.967 3.682 3.692 9.675 4.004 3.633 7.137 3.624 3.465 6.069

20 4.35 4.423 4.553 4.018 4.233 4.219 4.091 3.669 4.579 8.483 4.662

24 10.087 9.336 5.178 10.166 4.75 5.22 9.711 8.969 5.475 10.168 7.906

28 6.307 5.905 14.495 6.081 6.294 5.332 13.232 6.046 6.016 13.717 8.342

Table 4.7 – Grid Search PCA Training Execution Time (ms) for Optimal PC for Random Forest Model
(Number of Trees = 200; Min. Leaf Sample = 5)

36 California State University, Los Angeles

J.Nguyen

Fig. 4.3 – PC VS Average Time (ms) for Random Forest Tree Model on Testing Data

pc Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

4 0.177 0.255 0.268 0.166 0.179 0.24 0.165 0.208 0.242 0.164 0.206

8 0.179 0.185 0.163 0.184 0.243 0.237 0.186 0.206 0.235 0.173 0.199

12 0.193 0.231 0.195 0.165 0.274 0.183 0.165 0.218 0.193 0.18 0.2

16 0.177 0.231 0.191 0.203 0.186 0.237 0.188 0.24 0.164 0.194 0.201

20 0.344 0.18 0.179 0.263 0.187 0.166 0.211 0.185 0.196 0.199 0.211

24 0.208 0.164 0.254 0.194 0.195 0.181 0.18 0.176 0.211 0.225 0.199

28 0.205 0.203 0.424 0.184 0.184 0.231 0.196 0.22 0.228 0.19 0.226

Table 4.8 – Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal PC for Random
Forest Model (Number of Trees = 200; Min. Leaf Sample = 5)

37 California State University, Los Angeles

J.Nguyen

Fig. 4.4 – PC VS Average Time (ms) for PCA on Training Data

4.1.2 Number of Trees Grid Search

After conducting the grid search for the optimal PC, we repeat the same process for

determining the optimal number of trees, but we set the PC value to 4 and continue to keep

the minimum sample leaf value to 5. We start by analyzing the accuracy and execution time

for the following values for the trees: 20, 40, 60, 80, 100, 120, 140, 160, 180, 200, 220, 240,

260, 280, 300. Initially, we look at the accuracy of each value to see which ones look the

most promising. Amongst the most promising, we look at the confusion matrix and average

execution time over 10 trials to see which one performs the bests overall.

According to Table 4.9, the number of trees that produced the highest accuracy, 0.865,

is 240, 260, 280, and 300 trees. However, those are really large amounts of trees and are

38 California State University, Los Angeles

J.Nguyen

Fig. 4.5 – PC VS Average Time (ms) for PCA on Testing Data

expected to take longer to execute. Thus, we look at other possible values that produced

decent accuracy results. We also look at the confusion matrices for 20, 60, 80, 100, and 220

trees to see if the execution times would be faster given that performance deteriorates by an

insignificant amount.

Looking at Tables 4.15, 4.16, 4.17, 4.18, we can see that for 240, 260, 280, and 300 trees

the confusion matrix and accuracy is identical. However, as the number of trees increase,

the execution time increases as well. This indicates that at a certain point, the performance

of the model cannot be improved by increasing the number of trees, but the execution time

will continue to increase. Thus, if we want to have the best overall performance while being

computational efficient, choosing Number of Trees = 240 would be the better choice.

39 California State University, Los Angeles

J.Nguyen

We can also try to decrease the execution times by looking at lower tree values that

perform almost as good as 240 trees. As shown in tables 4.10 and 4.11, 20 and 60 trees have

the same accuracy and confusion matrix. Upon further inspection, 100 trees has the same

accuracy as 20 and 60 trees, but has a better confusion matrix (Table 4.13. This confusion

matrix shows no bias, while 20 and 60 trees show that there is some bias towards the ST

class. If we compare the confusion matrix for 100 trees (Table 4.13) and 200 trees (Table

4.3), their results is also the same. Similarly for 80 trees (Table 4.12) and 220 trees (Table

4.14), the accuracy and confusion matrix for the 2 are identical and show bias towards the

ST class. This again shows that at a certain point, increasing the number of trees would not

improve performance and could potentially slow down the algorithm instead.

The general trend for execution times regardless of performance is that the more trees

there are included in the model, the longer it takes to execute as shown in Table 4.19 and

4.19. However, looking at the trend in performance, we know that there is a certain point

where the performance will not improve by increasing the trees. Thus, we can look at the

lower number of trees and see if we can improve its performance in the next grid search.

We will continue the grid search using 100 and 240 trees since these 2 values had the best

accuracy and confusion matrix while having a low execution time.

40 California State University, Los Angeles

J.Nguyen

Number of Trees Accuracy

20 0.827

40 0.827

60 0.827

80 0.846

100 0.827

120 0.808

140 0.827

160 0.827

180 0.827

200 0.827

220 0.846

240 0.865

260 0.865

280 0.865

300 0.865

Table 4.9 – Grid Search for Optimal Number of Trees (PC = 4; Min. Sample Leaf = 5)

Class TPR FPR TNR FNR

AS 0.783 0.138 0.862 0.217

ST 0.862 0.217 0.783 0.138

Table 4.10 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.827, PC = 4,
Number of Trees = 20, Min. Sample Leaf Size = 5,)

41 California State University, Los Angeles

J.Nguyen

Fig. 4.6 – Trees vs Accuracy

Class TPR FPR TNR FNR

AS 0.783 0.138 0.862 0.217

ST 0.862 0.217 0.783 0.138

Table 4.11 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.827, PC = 4,
Number of Trees = 60, Min. Sample Leaf Size = 5)

Class TPR FPR TNR FNR

AS 0.870 0.172 0.828 0.130

ST 0.828 0.130 0.870 0.172

Table 4.12 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.846, PC = 4,
Number of Trees = 80, Min. Sample Leaf Size = 5)

42 California State University, Los Angeles

J.Nguyen

Class TPR FPR TNR FNR

AS 0.826 0.172 0.827 0.174

ST 0.828 0.174 0.826 0.172

Table 4.13 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.827, PC = 4,
Number of Trees = 100, Min. Sample Leaf Size = 5)

Class TPR FPR TNR FNR

AS 0.870 0.172 0.828 0.130

ST 0.828 0.130 0.870 0.172

Table 4.14 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.846, PC = 4,
Number of Trees = 220, Min. Sample Leaf Size = 5)

Class TPR FPR TNR FNR

AS 0.870 0.138 0.862 0.130

ST 0.862 0.130 0.870 0.138

Table 4.15 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC = 4,
Number of Trees = 240, Min. Sample Leaf Size = 5)

Class TPR FPR TNR FNR

AS 0.870 0.138 0.862 0.130

ST 0.862 0.130 0.870 0.138

Table 4.16 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC = 4,
Number of Trees = 260, Min. Sample Leaf Size = 5)

Class TPR FPR TNR FNR

AS 0.870 0.138 0.862 0.130

ST 0.862 0.130 0.870 0.138

Table 4.17 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC = 4,
Number of Trees = 280, Min. Sample Leaf Size = 5)

43 California State University, Los Angeles

J.Nguyen

Class TPR FPR TNR FNR

AS 0.870 0.138 0.862 0.130

ST 0.862 0.130 0.870 0.138

Table 4.18 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC = 4,
Number of Trees = 300, Min. Sample Leaf Size = 5)

tree Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

20 175.885 169.522 174.866 179.188 267.942 167.862 206.931 176.435 177.845 179.25 187.573

40 305.77 315.973 309.976 315.386 477.76 303.66 445.687 305.37 318.028 332.994 343.06

60 448.542 454.085 455.318 449.193 656.746 438.366 499.949 463.439 444.827 454.744 476.521

80 585.941 596.906 631.119 594.549 829.339 589.761 591.591 592.409 595.014 836.838 644.347

100 718.231 720.703 1039.351 716.109 927.753 716.515 718.344 729.638 733.238 1048.84 806.872

120 957.292 871.43 1236.256 870.422 850.066 854.853 859.557 1106.824 882.428 1257.756 974.688

140 1475.124 1025.245 1278.842 1026.349 985.898 1006.224 1009 1439.029 1022.805 1110.317 1137.883

160 1609.789 1136.355 1134.245 1159.081 1144.175 1570.611 1135.664 1582.038 1152.826 1161.025 1278.581

180 1306.02 1259.144 1286.215 1621.283 1269.703 1927.096 1291.095 1300.425 1294.822 1309.837 1386.564

200 1395.909 1594.282 1428.807 2010.418 1392.792 1514.487 1437.443 1431.49 1756.709 1418.664 1538.1

220 1569.657 2209.524 1590.991 1630.199 1544.767 1575.431 1803.937 1579.927 2239.64 1559.75 1730.382

240 1695.541 1902.501 1695.96 1670.111 1923.16 1696.959 2389.31 1727.343 1711.262 1672.987 1808.513

260 1788.841 1802.483 2183.423 1837.431 2578.433 1829.595 1981.286 1859.263 1848.839 2387.209 2009.68

280 2352.373 1971.832 2795.654 2000.529 1985.934 1952.545 1998.385 2596.332 1945.519 2581.314 2218.042

300 2771.659 2104.448 2121.961 2145.937 2090.94 2834.96 2134.016 2643.288 2081.095 2135.119 2306.342

Table 4.19 – Grid Search Model Training Execution Time (ms) for Optimal Number of Trees for Random Forest
Model (PC = 4; Min Leaf Sample = 5)

44 California State University, Los Angeles

J.Nguyen

Fig. 4.7 – Tree VS Average Time (ms) for Random Forest Tree Model on Training Data

tree Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

20 1.853 1.808 1.862 1.781 1.912 1.82 1.857 2.015 2.013 1.828 1.875

40 1.984 1.634 1.865 1.782 1.945 1.919 2.062 1.903 1.983 2.709 1.979

60 1.937 2.411 1.732 1.841 1.893 1.785 2.649 1.955 1.901 1.86 1.996

80 2.044 2.066 1.94 1.911 1.88 2.007 1.926 1.803 1.847 6.295 2.372

100 2.021 1.948 2.226 1.898 6.506 1.734 1.822 1.812 1.751 6.522 2.824

120 2.045 2.003 6.396 1.735 1.677 1.884 1.909 1.61 1.846 2.048 2.315

140 6.362 2.066 6.113 1.85 1.769 1.771 1.882 5.937 1.782 2.051 3.158

160 1.996 2.074 1.834 1.829 1.68 1.853 1.837 6.508 2.022 1.892 2.352

180 2.035 2.029 1.869 1.794 2.024 6.494 2.059 1.921 1.974 1.808 2.401

200 2.082 2.168 1.866 6.435 1.739 6.318 1.86 1.873 1.705 1.883 2.793

220 2.112 2.142 1.877 1.866 1.782 2.022 1.828 1.92 6.315 1.792 2.366

240 2.004 6.378 2.019 2.073 1.693 2.105 6.79 2.05 1.998 2.112 2.922

260 2.111 1.943 2.183 1.93 6.881 1.995 2.182 2.129 2.146 2.02 2.552

280 1.792 1.893 2.008 1.831 1.837 1.899 1.85 1.897 1.942 7.013 2.396

300 6.623 1.778 1.733 1.912 1.796 1.866 1.962 6.544 1.843 1.829 2.789

Table 4.21 – Grid Search PCA Training Execution Time (ms) for Optimal Number of Trees for Random
Forest Model (PC = 4; Min Leaf Sample = 5)

45 California State University, Los Angeles

J.Nguyen

tree Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average
20 2.636 2.845 2.647 3.735 3.613 2.408 3.773 2.807 2.525 2.642 2.963
40 4.545 5.131 4.884 4.479 6.584 6.418 10.799 5.626 4.794 5.486 5.875
60 6.621 7.036 7.128 6.553 10.752 6.724 6.694 7.405 6.48 7.034 7.243
80 8.817 9.521 14.464 10.972 13.165 8.817 9.353 9.321 9.362 11.631 10.542
100 10.789 15.379 14.305 10.392 10.331 11.505 16.222 12.275 11.215 14.843 12.726
120 19.938 14.223 20.627 15.792 11.954 14.112 12.989 17.963 14.327 20.655 16.258
140 19.88 14.376 14.682 15.196 14.695 15.932 15.296 20.675 16.826 16.018 16.358
160 26.658 17.321 18.581 16.001 17.933 25.769 17.551 18.275 18.479 18.675 19.524
180 20.029 26.033 19.939 25.905 18.643 32.384 20.003 18.614 19.314 22.708 22.357
200 20.48 30.789 21.025 29.788 20.921 22.335 23.5 20.726 31.752 21.533 24.285
220 24.701 37.967 25.152 22.003 22.822 24.441 33.665 23.339 37.676 23.945 27.571
240 24.047 26.05 28.363 26.15 39.438 26.596 42.569 25.839 28.62 24.94 29.261
260 28.522 26.493 43.518 27.802 44.308 32.409 26.918 27.608 27.397 39.37 32.434
280 42.566 30.006 29.319 31.152 29.396 31.725 31.341 40.946 29.968 30.976 32.74
300 32.263 31.907 32.3 53.026 31.194 50.345 33.468 38.56 33.265 32.472 36.88

Table 4.20 – Grid Search Model Execution Time (ms) on Testing Data Set for Optimal Number of Trees for
Random Forest Model (PC = 4; Min Leaf Sample = 5)

tree Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

20 0.151 0.186 0.191 0.214 0.218 0.191 0.239 0.24 0.159 0.178 0.197

40 0.163 0.2 0.18 0.173 0.234 0.221 0.222 0.183 0.209 0.235 0.202

60 0.19 0.164 0.208 0.167 0.258 0.159 0.153 0.199 0.165 0.168 0.183

80 0.193 0.19 0.255 0.208 0.257 0.164 0.19 0.15 0.169 0.243 0.202

100 0.165 0.254 0.224 0.155 0.175 0.162 0.188 0.16 0.155 0.228 0.187

120 0.25 0.168 0.256 0.163 0.166 0.167 0.172 0.276 0.171 0.294 0.208

140 0.234 0.157 0.19 0.162 0.174 0.167 0.168 0.214 0.192 0.166 0.182

160 0.25 0.157 0.175 0.163 0.163 0.467 0.165 0.173 0.169 0.177 0.206

180 0.18 0.178 0.178 0.213 0.157 0.237 0.195 0.168 0.157 0.167 0.183

200 0.18 0.259 0.168 0.235 0.16 0.17 0.168 0.168 0.257 0.172 0.194

220 0.176 0.269 0.18 0.178 0.153 0.174 0.243 0.192 0.249 0.166 0.198

240 0.17 0.199 0.172 0.151 0.217 0.196 0.267 0.179 0.158 0.157 0.187

260 0.173 0.17 0.27 0.168 0.258 0.169 0.157 0.205 0.167 0.221 0.196

280 0.254 0.173 0.169 0.22 0.173 0.22 0.179 0.227 0.189 0.174 0.198

300 0.176 0.23 0.166 0.252 0.165 0.217 0.177 0.184 0.177 0.181 0.193

Table 4.22 – Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal Number of Trees
for Random Forest Model (PC = 4; Min Leaf Sample = 5)

46 California State University, Los Angeles

J.Nguyen

Fig. 4.8 – Tree VS Average Time (ms) for Random Forest Tree Model on Testing Data

4.1.3 Minimum Sample Leaf

We start another grid search for finding the minimum sample leaf size. For this grid

search, we looked at the following possible leaf sizes: 2, 3, 4, 5, 6,, 7, 8, 9, and 10. We kept

PC = 4, and we looked at performance at 100 and 240 trees to see if we can optimize both

performance and execution times.

According to Table 4.27 and 4.28, both values for the tree can produce the same accuracy

(0.865), but using different minimum leaf sample sizes. For 100 trees, the highest accuracy

was produced when the minimum leaf sample size was set to 4 and for 240 trees, the highest

accuracy was produced when the minimum leaf sample size was set to 5. If we look closer at

both the confusion matrices at these parameter sets (Table 4.33 and 4.15), we can see they

are identical. However, the execution times differ. According to Table 4.23, 4.24, 4.29 and

4.30, 100 trees set at 4 leaves executed faster than 240 trees set at 5 leaves.This could be

due to the fact that more branches can be created with a smaller minimum sample leaf size

and that accounts for the extra trees that 240 trees has in the decision process. Thus, the

optimal performance can be achieved while maintaining a faster execution time through fine

tuning the hyperparameters.

47 California State University, Los Angeles

J.Nguyen

Fig. 4.9 – Tree VS Average Time (ms) for PCA on Training Data

leaf Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

2 820.12 803.58 792.79 770.66 1107.15 779.14 769.24 1122.91 796.5 796.64 855.87

3 765.77 782.11 839.35 746.59 796.23 777.18 757.75 1091.78 767.51 781.31 810.56

4 896.49 751.52 1079.94 734.98 758.41 748.42 770.11 1059.03 759.81 769.04 832.77

5 869.87 735.81 1091.75 728.02 727.42 974.94 731.53 743.89 743.68 754.19 810.11

6 1110.13 750.95 1030.23 708.03 717.59 1015.29 727.67 739.93 780.39 729.96 831.02

7 1263.5 712.04 720.16 705.48 726.87 986.02 710.24 715.62 1007.02 718.83 826.58

8 1249.73 710.43 740.65 718.93 705.18 903.78 703.10 702.28 1013.70 722.69 817.05

9 1079.13 694.2 715.12 1034.12 698.76 723.76 696.73 726.19 985.95 716.63 807.06

10 957.84 692.54 697.34 994.77 686.29 678.67 747.68 696.78 687.48 690.11 752.95

Table 4.23 – Grid Search Model Training Execution Time (ms) for Minimum Number of Leaves for
Random Forest Model (Number of Trees = 100; PC = 4)

48 California State University, Los Angeles

J.Nguyen

Fig. 4.10 – Tree VS Average Time (ms) for PCA on Testing Data

leaf Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

2 11.49 11.4 11.4 13.22 16.2 11.47 11.08 15.4 11.15 10.96 12.38

3 11.38 11.58 15.27 10.44 11.19 11.99 10.81 15.57 11.04 11.45 12.071

4 15.879 11.833 17.272 11.049 11.22 10.953 11.632 12.131 11.23 11.479 12.468

5 14.908 11.206 15.411 10.153 11.322 14.501 12.063 11.163 12.169 11.419 12.432

6 17.405 10.995 17.897 11.231 10.967 14.375 10.862 11.275 18.68 12.711 13.64

7 25.776 11.809 11.377 11.277 12.586 15.939 10.782 10.846 19.43 10.65 14.047

8 27.928 10.264 11.033 11.072 12.149 12.416 10.81 10.882 20.904 11.579 13.904

9 16.822 12.374 11.946 15.148 10.394 10.756 11.059 11.272 15.518 10.212 12.55

10 17.704 10.75 10.861 17.303 10.493 11.104 14.775 15.304 10.817 10.621 12.973

Table 4.24 – Grid Search Model Execution Time (ms) on Testing Data Set for Minimum Number of Leaves for
Random Forest Model (Number of Trees = 100; PC = 4)

49 California State University, Los Angeles

J.Nguyen

Fig. 4.11 – Minimum Sample Leaf Size VS. Accuracy for Number of Trees = 100

leaf Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

2 1.864 2.032 2.081 1.961 2.21 1.419 2.034 4.789 2.172 2.118 2.268

3 1.725 2.235 2.102 2.042 2.161 2.005 2.171 6.5 2.288 2.041 2.527

4 1.64 2.055 2.021 1.97 2.06 2.154 2.802 6.469 2.112 2.203 2.549

5 5.339 2.105 9.907 2.127 2.097 2.246 2.151 2.098 2.067 2.241 3.238

6 4.81 2.093 6.821 2.028 2.116 2.246 2.097 2.105 1.949 2.251 2.852

7 3.187 2.026 2.093 2.061 2.201 2.109 1.889 2.088 7.012 2.114 2.678

8 2.385 2.145 2.172 2.025 2.086 6.294 2.086 2.042 9.033 2.157 3.242

9 2.261 2.219 2.068 3.22 2.069 2.259 2.084 2.156 2.244 2.06 2.264

10 7.039 2.048 2.146 6.956 2.134 2.139 2.116 2.092 2.274 2.154 3.11

Table 4.25 – Grid Search PCA Training Execution Time (ms) for Minimum Number of Leaves for
Random Forest Model (Number of Trees = 100; PC = 4)

50 California State University, Los Angeles

J.Nguyen

Fig. 4.12 – Minimum Sample Leaf VS. Accuracy Number of Trees = 240

leaf Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

2 0.17 0.186 0.164 0.23 0.233 0.163 0.171 0.233 0.172 0.186 0.191

3 0.202 0.187 0.232 0.169 0.159 0.196 0.188 0.265 0.148 0.157 0.19

4 0.598 0.207 0.241 0.169 0.156 0.163 0.171 0.239 0.197 0.212 0.235

5 0.21 0.175 0.223 0.161 0.181 0.21 0.176 0.176 0.191 0.165 0.187

6 0.228 0.162 0.218 0.172 0.176 0.212 0.157 0.193 0.262 0.176 0.196

7 0.345 0.189 0.174 0.173 0.184 0.219 0.162 0.157 0.227 0.159 0.199

8 0.281 0.169 0.226 0.167 0.214 0.175 0.151 0.165 0.231 0.174 0.195

9 0.272 0.205 0.199 0.253 0.185 0.154 0.197 0.165 0.242 0.202 0.207

10 0.331 0.179 0.207 0.243 0.168 0.155 0.215 0.23 0.157 0.18 0.206

Table 4.26 – Grid Search PCA Execution Time (ms) on Testing Data Set for Minimum Number of
Leaves for Random Forest Model (Number of Trees = 100)

51 California State University, Los Angeles

J.Nguyen

Fig. 4.13 – Leaf VS Average Time (ms) for Random Forest Tree Model on Training Data
(for Tree = 100; PC =4)

Min. Leaf Size Accuracy

2 0.846

3 0.808

4 0.865

5 0.827

6 0.788

7 0.827

8 0.808

9 0.808

10 0.808

Table 4.27 – Grid Search for Optimal Minimum Sample Leaf Size for Number of Trees =
100 (PC = 4)

52 California State University, Los Angeles

J.Nguyen

Fig. 4.14 – Leaf VS Average Time (ms) for Random Forest Tree Model on Testing Data (for
Tree = 100)

Min. Leaf Size Accuracy

2 0.808

3 0.808

4 0.846

5 0.865

6 0.827

7 0.865

8 0.808

9 0.827

10 0.808

Table 4.28 – Grid Search for Optimal Minimum Sample Leaf Size for Number of Trees =
240 (PC = 4)

53 California State University, Los Angeles

J.Nguyen

Fig. 4.15 – Leaf VS Average Time (ms) for PCA on Training Data (for Tree = 100)

leaf Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

2 2590.307 1859.567 1832.99 2027.184 1823.246 2221.376 1837.944 1773.652 2541.457 1769.339 2027.706

3 1818.666 1773.531 2452.889 1793.56 1770.699 2526.279 1801.92 1750.951 2210.309 1749.433 1964.824

4 1777.52 1714.426 2139.81 1730.671 1764.101 1721.064 1734.329 2304.586 1702.273 1724.235 1831.302

5 1752.83 2101.131 1700.99 1697.423 2502.036 1691.819 1701.668 2284.312 1754.601 1659.782 1884.659

6 1673.419 2388.607 1690.436 1657.775 1899.708 1704.827 2001.897 1673.035 1704.228 2251.877 1864.581

7 1684.882 1641.892 1629.123 2216.982 1663.684 1669.939 2389.227 1596.02 1673.122 2173.253 1833.812

8 2363.167 1584.835 1636.11 2255.96 1647.066 1625.216 1710.829 1618.1 1959.062 1664.988 1806.533

9 1880.157 1622.017 1770.947 1613.214 1620.022 2321.453 1634.007 1599.685 2292.008 1648.163 1800.167

10 1606.194 1612.474 2293.572 1600.005 1615.525 2051.74 1560.119 1587.157 1593.636 1608.186 1712.861

Table 4.29 – Grid Search Model Training Execution Time (ms) for Minimum Number of Leaves for Random Forest
Model (Number of Trees = 240; PC = 4)

54 California State University, Los Angeles

J.Nguyen

Fig. 4.16 – Leaf VS Average Time (ms) for PCA on Testing Data (for Tree = 100)

leaf Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

2 26.575 36.24 28.438 27.575 29.094 39.82 26.555 25.642 35.513 27.841 30.329

3 26.447 29.321 37.564 27.532 26.284 43.764 28.582 25.64 26.095 26.195 29.742

4 28.924 25.392 24.985 24.325 44.391 25.68 25.736 38.225 24.435 26.241 28.833

5 26.447 35.345 26.372 25.978 40.701 28.928 25.19 24.901 25.149 27.769 28.678

6 24.68 27.474 24.864 26.35 25.965 26.307 39.712 28.595 33.348 34.783 29.208

7 40.014 24.84 25.587 33.499 30.58 27.784 44.989 22.744 37.492 27.328 31.486

8 35.21 26.585 25.422 26.847 24.468 25.87 25.238 25.531 37.959 25.658 27.879

9 25.961 25.214 37.948 24.869 29.035 47.154 26.847 25.141 34.122 35.443 31.173

10 24.711 24.316 33.965 24.813 24.872 24.356 24.384 25.996 23.997 24.327 25.574

Table 4.30 – Grid Search Model Execution Time (ms) on Testing Data Set for Minimum Number of
Leaves for Random Forest Model (Number of Trees = 240; PC = 4)

55 California State University, Los Angeles

J.Nguyen

Fig. 4.17 – Leaf VS Average Time (ms) for Random Forest Tree Model on Training Data
(for Tree = 240)

leaf Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

2 6.746 1.948 2.177 6.776 2.071 2.183 2.002 1.905 2.162 2.049 3.002

3 2.146 1.942 2.128 2.167 2.226 2.071 2.113 1.97 4.153 1.817 2.273

4 2.052 2.03 2.183 2.213 2.028 2.039 2.112 2.086 2.085 1.966 2.079

5 2.04 2.026 2.264 2.123 2.18 2.089 1.968 2.15 2.114 1.992 2.095

6 2.223 7.072 2.263 2.063 7.653 2.081 2.056 2.17 2.017 2.177 3.178

7 2.086 2.025 2.048 2.126 2.124 1.962 3.835 2.019 2.053 2.162 2.244

8 7.716 2.122 1.993 2.282 2.05 2.11 6.597 1.868 2.045 2.091 3.087

9 4.096 2.258 2.066 2.081 2.182 6.856 2.012 2.068 10.059 2.166 3.584

10 2.026 1.966 2.307 2.079 2.115 2.168 1.902 2.951 2.125 2.044 2.168

Table 4.31 – Grid Search PCA Training Execution Time (ms) for Minimum Number of Leaves for
Random Forest Model (Number of Trees = 240; PC = 4)

56 California State University, Los Angeles

J.Nguyen

Fig. 4.18 – Leaf VS Average Time (ms) for Random Forest Tree Model on Testing Data (for
Tree = 240)

leaf Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

2 0.172 0.164 0.202 0.171 0.186 0.222 0.174 0.169 0.218 0.178 0.186

3 0.168 0.206 0.222 0.164 0.192 0.299 0.155 0.173 0.182 0.206 0.197

4 0.166 0.169 0.192 0.185 0.293 0.194 0.173 0.266 0.185 0.181 0.2

5 0.175 0.236 0.202 0.175 0.258 0.185 0.169 0.175 0.159 0.166 0.19

6 0.155 0.176 0.169 0.163 0.162 0.193 0.233 0.192 0.199 0.218 0.186

7 0.211 0.196 0.205 0.229 0.177 0.183 0.283 0.155 0.164 0.19 0.199

8 0.232 0.18 0.168 0.182 0.173 0.157 0.166 0.169 0.257 0.184 0.187

9 0.168 0.163 0.229 0.164 0.205 0.289 0.175 0.153 0.219 0.182 0.195

10 0.18 0.157 0.2 0.182 0.189 0.196 0.174 0.167 0.158 0.174 0.178

Table 4.32 – Grid Search PCA Execution Time (ms) on Testing Data Set for Minimum Number of
Leaves for Random Forest Model (Number of Trees = 240; PC = 4)

57 California State University, Los Angeles

J.Nguyen

Fig. 4.19 – Leaf VS Average Time (ms) for PCA on Training Data (for Tree = 240)

Class TPR FPR TNR FNR

AS 0.870 0.138 0.862 0.130

ST 0.862 0.130 0.870 0.138

Table 4.33 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.865, PC = 4,
Number of Trees = 100, Min. Sample Leaf Size = 4)

Class TPR FPR TNR FNR

AS 0.870 0.172 0.828 0.130

ST 0.828 0.130 0.870 0.172

Table 4.34 – Confusion Matrix Random Forest Tree after PCA (Accuracy = 0.846, PC = 4,
Number of Trees = 240, Min. Sample Leaf Size = 4)

58 California State University, Los Angeles

J.Nguyen

Fig. 4.20 – Leaf VS Average Time (ms) for PCA on Testing Data (for Tree = 240)

4.1.4 Max Depth

We finish up the grid search by finding the optimal max depth value. We had set the max

depth value to its default value, which is to continue running until the leaves are pure. This

can be computational costly if the trees end up having too many levels [18], thus limiting

the sizes of the trees by fine tuning the mx depth parameter can decrease execution times.

To start off, we find the accuracy of the following values for the max depth: 10, 11, 12, 13,

14, 15, 16, 17, 18, 19, and 20. According to Table 4.35, the max depth that gave us the

highest accuracy was 20. Looking at the execution times, a max depth of 20 tends to take

longer than the other max depth values including the default value, however the difference

between the times is small and we chose to stick with a max depth of 20 since it offers the

best performance and combats overfitting with little cost in terms execution times.

59 California State University, Los Angeles

J.Nguyen

Max Depth Accuracy

10 0.827

11 0.788

12 0.827

13 0.846

14 0.827

15 0.808

16 0.808

17 0.846

18 0.846

19 0.846

20 0.865

Table 4.35 – Grid Search for Optimal Max Depth (Number of Trees = 100; PC = 4; Min.
Sample Leaf Size = 4))

depth Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

10 799.41 805.308 754.77 1137.594 979.342 782.834 748.345 774.022 794.495 755.503 833.162

11 831.774 841.092 788.939 1177.753 1171.694 800.02 782.921 827.363 803.92 789.909 881.539

12 832.673 819.224 800.861 849.508 1218.522 1185.249 812.735 863.449 808.912 803.03 899.416

13 838.492 870.748 829.602 844.288 937.538 1231.574 973.17 824.197 830.995 822.32 900.292

14 842.967 829.764 842.167 848.22 829.983 1202.896 1189.993 844.138 830.211 830.203 909.054

15 858.877 852.631 847.567 832.941 848.946 902.117 1193.488 1167.823 838.591 870.073 921.305

16 954.787 884.525 840.546 860.185 831.354 864.235 1113.057 1239.265 861.739 881.33 933.102

17 1299.627 881.253 855.996 842.671 865.155 861.611 843.458 1192.163 1248.616 840.048 973.06

18 1274.936 1245.802 875.989 836.992 861.835 863.149 867.188 889.99 1253.195 1034.745 1000.382

19 1126.781 1235.126 877.949 874.885 854.519 850.86 872.573 862.021 1198.836 1209.669 996.322

20 869.907 1272.559 1285.752 870.843 846.494 851.468 842.382 851.978 858.32 1199.903 974.961

Table 4.36 – Grid Search Model Training Execution Time (ms) for Max Depth for Random Forest Model (Number
of Trees = 100; PC = 4; Min. Sample Leaf = 4)

60 California State University, Los Angeles

J.Nguyen

Fig. 4.21 – Depth VS Average Time (ms) for Random Forest Tree Model on Training Data
(Number of Trees = 100; PC = 4; Min. Sample Leaf = 4)

depth Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

10 6.977 9.415 6.265 9.911 11.131 9.809 5.983 6.92 6.283 7.207 7.99

11 7.856 6.563 9.803 6.892 10.048 6.789 7.036 7.761 7.302 7.442 7.749

12 6.715 7.07 6.435 12.512 11.074 10.624 7.167 8.939 6.212 7.283 8.403

13 7.269 10.6 10.072 9.022 8.3 12.183 12.906 6.803 8.949 6.46 9.256

14 9.812 6.95 6.752 7.161 6.9 10.253 9.809 7.023 7.551 7.136 7.935

15 7.814 7.73 8.229 7.286 7.384 7.675 12.046 13.029 7.117 7.009 8.532

16 12.78 7.477 6.736 7.042 12.47 7.877 6.964 11.429 13.4 7.902 9.408

17 12.13 6.887 7.828 6.33 7.262 6.963 8.17 11.329 11.796 6.807 8.55

18 12.641 11.143 7.602 8.28 7.178 7.747 7.376 7.502 10.319 11.367 9.116

19 7.489 10.483 14.429 6.507 8.694 6.685 8.117 6.878 7.882 10.393 8.756

20 7.421 16.207 11.139 7.266 6.393 6.995 6.869 7.593 6.704 10.605 8.719

Table 4.37 – Grid Search Model Execution Time (ms) on Testing Data Set for Max Depth for Random
Forest Model (Number of Trees = 100; PC = 4; Min. Sample Leaf = 4)

61 California State University, Los Angeles

J.Nguyen

Fig. 4.22 – Depth VS Average Time (ms) for Random Forest Tree Model on Testing Data
(Number of Trees = 100; PC = 4; Min. Sample Leaf = 4)

depth Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

10 0.279 0.514 0.267 0.432 0.583 0.355 0.241 0.287 0.333 0.293 0.358

11 0.412 0.303 0.315 0.312 0.448 0.243 0.241 0.336 0.294 0.229 0.313

12 0.258 0.3 0.288 0.408 0.494 0.432 0.423 0.358 0.298 0.297 0.356

13 0.248 0.4 0.28 0.55 0.351 0.408 0.537 0.252 0.371 0.244 0.364

14 0.34 0.293 0.422 0.276 0.33 0.505 0.417 0.311 0.285 0.303 0.348

15 0.435 0.364 0.307 0.326 0.345 0.354 0.486 0.528 0.259 0.279 0.368

16 0.46 0.375 0.308 0.272 0.298 0.291 0.297 0.641 0.564 0.496 0.4

17 0.42 0.317 0.251 0.245 0.332 0.369 0.348 0.494 0.453 0.26 0.349

18 0.535 0.5 0.318 0.307 0.282 0.319 0.538 0.273 0.502 0.492 0.407

19 0.303 0.458 0.393 0.294 0.327 0.381 0.266 0.338 0.391 0.411 0.356

20 0.319 0.654 0.405 0.262 0.26 0.268 0.587 0.338 0.314 0.455 0.386

Table 4.38 – Grid Search PCA Training Execution Time (ms) for Max Depth for Random Forest Model
(Number of Trees = 100; PC = 4; Min. Sample Leaf = 4)

62 California State University, Los Angeles

J.Nguyen

Fig. 4.23 – Depth VS Average Time (ms) for PCA on Training Data ((Number of Trees =
100; PC = 4; Min. Sample Leaf = 4)

depth Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

10 0.279 0.514 0.267 0.432 0.583 0.355 0.241 0.287 0.333 0.293 0.358

11 0.412 0.303 0.315 0.312 0.448 0.243 0.241 0.336 0.294 0.229 0.313

12 0.258 0.3 0.288 0.408 0.494 0.432 0.423 0.358 0.298 0.297 0.356

13 0.248 0.4 0.28 0.55 0.351 0.408 0.537 0.252 0.371 0.244 0.364

14 0.34 0.293 0.422 0.276 0.33 0.505 0.417 0.311 0.285 0.303 0.348

15 0.435 0.364 0.307 0.326 0.345 0.354 0.486 0.528 0.259 0.279 0.368

16 0.46 0.375 0.308 0.272 0.298 0.291 0.297 0.641 0.564 0.496 0.4

17 0.42 0.317 0.251 0.245 0.332 0.369 0.348 0.494 0.453 0.26 0.349

18 0.535 0.5 0.318 0.307 0.282 0.319 0.538 0.273 0.502 0.492 0.407

19 0.303 0.458 0.393 0.294 0.327 0.381 0.266 0.338 0.391 0.411 0.356

20 0.319 0.654 0.405 0.262 0.26 0.268 0.587 0.338 0.314 0.455 0.386

Table 4.39 – Grid Search PCA Execution Time (ms) on Testing Data Set for Max Depth for Random
Forest Model (Number of Trees = 100; PC = 4; Min. Sample Leaf = 4)

63 California State University, Los Angeles

J.Nguyen

Fig. 4.24 – Depth VS Average Time (ms) for PCA on Testing Data (Number of Trees = 100;
PC = 4; Min. Sample Leaf = 4)

After conducting the grid search we decided that the optimal parameters are: 4 PC,

100 decision trees, a minimum sample leaf of 4 and a max depth of 20. We have seen that

increasing these parameters can result in a better performance, but the extend to which

it has to be increased to see a great improvement in performance causes the model to run

significantly longer. Thus we choose the set of parameters that had the fastest execution

time with the best performance.

4.2 Support Vector Machine

To find the optimal parameter set for SVM, we repeat a similar process as we did for the

Random Forest Tree classifier. We start off by finding the optimal PC and keeping the other

parameters constant. The kernel is set to ”rbf” and gamma is set to ”auto”. As seen in

Table 4.40, the confusion matrix performance is extremely poor. The TPR for AS and ST is

64 California State University, Los Angeles

J.Nguyen

extremely bias and shows that the model tends to classify videos as ST, resulting in a higher

TPR for ST and a low TPR for AS. Moreover, the FPR for ST is higher than we would like,

further demonstrating that the model would classify more videos as ST. Thus, we need to

implement PCA to try to improve the model’s performance. After implementing PCA and

determining the optimal PC, we found the optimal kernel and its parameters before finding

the optimal coefficient. Again, we run 10 trials of each potential parameter set to see and

compare the average execution times.

Class TPR FPR TNR FNR

AS 0.478 0.138 0.826 0.522

ST 0.862 0.521 0.478 0.138

Table 4.40 – Confusion Matrix for SVM before PCA (Accuracy = 0.69, kernel = rbf, gamma
= auto)

4.2.1 PC Grid search

We started the PC grid search by examining the accuracy of each potential PC while

the model’s kernel parameter was set to ”rbf” and the model’s gamma parameter was set to

”auto”. Preliminary analysis show that PC = 12, 20 and 24 produced the highest accuracy

(Table 4.41) of 0.808. However, we also examined the confusion matrices for PC = 8 and 16

to see whether its confusion matrix performs better than the higher valued PCs.

The confusion matrices for PC = 8 and 16 (Table 4.42 and 4.44) show poor performance

in the TPR for the ST class, which indicates there is a significant bias towards the AS class

and exhibits the model’s tendency to classify a video as AS. The confusion matrix for PC =

12 (Table 4.43 is only slightly better, but there is a bias towards the ST class as indicated by

the higher TPR for ST. As seen in Table 4.45 and 4.46, the confusion matrices for PC = 20

and 24 are identical, however out of all the potential options for the optimal PC we analyzed,

these 2 show the least amount of bias while maintaining relatively fast execution times. We

chose PC = 20 to continue with the other optimizing grid searches because it has the highest

65 California State University, Los Angeles

J.Nguyen

accuracy, shows the least amount of bias in its confusion matrix, and has a relatively fast

execution time (Table 4.53, 4.47, 4.54 and 4.48). Again, we see that the average time for the

lower PCs is slightly slower than some of the higher PCs. This could be due to the fact that

the testing data set is so small that there is small variations in execution times due to the

resources available on Google Colab Pro+. The difference is very minuscule in some cases,

but overall, PC = 20 offers the fastest execution time with the best performance in terms of

accuracy and its confusions matrix.

PC Accuracy

4 0.596

8 0.769

12 0.808

16 0.788

20 0.808

24 0.808

28 0.788

Table 4.41 – Grid Search for Optimal PC for SVM Model (kernel = rbf, gamma = auto)

Class TPR FPR TNR FNR

AS 0.609 0.103 0.897 0.391

ST 0.897 0.391 0.609 0.103

Table 4.42 – Confusion Matrix for SVM after PCA (Accuracy = 0.769, PC = 8, kernel =
rbf, gamma = auto)

66 California State University, Los Angeles

J.Nguyen

Fig. 4.25 – PC VS. Accuracy for SVM

Class TPR FPR TNR FNR

AS 0.700 0.103 0.897 0.304

ST 0.897 0.304 0.700 0.103

Table 4.43 – Confusion Matrix for SVM after PCA (Accuracy = 0.808, PC = 12, kernel =
rbf, gamma = auto)

Class TPR FPR TNR FNR

AS 0.696 0.138 0.862 0.304

ST 0.862 0.304 0.696 0.138

Table 4.44 – Confusion Matrix for SVM after PCA (Accuracy = 0.788, PC = 16, kernel =
rbf, gamma = auto)

67 California State University, Los Angeles

J.Nguyen

Class TPR FPR TNR FNR

AS 0.739 0.138 0.862 0.261

ST 0.862 0.261 0.739 0.138

Table 4.45 – Confusion Matrix for SVM after PCA (Accuracy = 0.808, PC = 20, kernel =
rbf, gamma = auto)

Class TPR FPR TNR FNR

AS 0.739 0.138 0.862 0.261

ST 0.862 0.261 0.739 0.138

Table 4.46 – Confusion Matrix for SVM after PCA (Accuracy = 0.808, PC = 24, kernel =
rbf, gamma = auto)

pc Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

4 588.334 570.108 569.499 566.198 926.769 595.809 553.196 965.701 556.671 550.601 644.289

8 547.007 553.351 633.063 536.553 554.558 542.253 553.588 701.63 540.555 541.412 570.397

12 551.804 557.868 932.014 547.318 546.564 884.045 557.257 558.111 563.442 536.72 623.514

16 506.325 515.507 802.58 491.359 490.408 711.686 511.18 504.546 760.883 502.805 579.728

20 532.371 548.698 521.889 521.399 518.283 852.292 538.556 532.551 839.261 535.783 594.108

24 934.011 563.337 567.735 713.126 540.756 540.176 551.112 554.802 630.044 544.594 613.969

28 950.662 593.515 586.539 914.151 564.562 564.704 894.41 567.075 586.051 575.864 679.753

Table 4.47 – Grid Search Model Training Execution Time (ms) for Optimal PC for SVM (kernel = rbf,
gamma = auto)

68 California State University, Los Angeles

J.Nguyen

Fig. 4.26 – PC VS Average Time (ms) for SVM on Training Data

pc Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

4 8.687 7.893 7.942 7.884 8.044 7.854 8.842 15.511 8.146 8.029 8.883

8 10.277 8.816 16.844 7.891 8.246 7.843 7.811 7.927 8.033 7.887 9.158

12 7.44 7.511 15.681 7.515 7.582 15.177 7.684 7.482 7.414 7.467 9.095

16 6.898 6.352 12.529 6.469 6.437 13.221 6.684 6.39 12.706 6.762 8.445

20 14.708 7.179 6.997 7.313 7.011 7.343 7.041 6.923 13.829 6.93 8.527

24 14.254 10.302 7.978 14.385 7.416 7.237 7.283 7.461 7.361 8.677 9.235

28 15.277 7.769 9.045 15.668 8.093 7.751 15.193 7.823 8.213 8.384 10.322

Table 4.48 – Grid Search Model Execution Time (ms) on Testing Data Set for Optimal PC for SVM
(kernel = rbf, gamma = auto)

69 California State University, Los Angeles

J.Nguyen

Fig. 4.27 – PC VS Average Time (ms) for SVM on Testing Data

pc Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

4 49.2 22.217 20.041 20.082 36.229 24.075 20.699 40.509 20.46 38.022 29.153

8 22.973 28.24 20.512 23.038 22.565 19.749 20.013 34.243 19.971 20.411 23.172

12 24.113 23.023 35.058 22.958 41.348 40.617 23.438 19.635 20.435 19.671 27.03

16 40.264 19.952 34.674 20.042 20.901 47.282 21.244 23.782 35.854 20.113 28.411

20 19.749 20.81 21.035 19.944 19.913 36.742 23.249 20.703 35.394 19.848 23.739

24 36.35 21.609 21.86 19.956 20.477 19.822 20.65 20.464 45.254 19.901 24.634

28 35.689 23.917 20.064 50.357 20.469 20.063 22.164 21.815 20.254 20.707 25.55

Table 4.49 – Grid Search PCA Training Execution Time (ms) for Optimal PC for SVM (kernel = rbf,
gamma = auto)

70 California State University, Los Angeles

J.Nguyen

Fig. 4.28 – PC VS Average Time (ms) for PCA on Training Data

pc Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

4 6.244 2.094 1.906 1.965 1.939 1.921 1.87 3.152 2.035 1.889 2.502

8 2.666 1.898 2.991 1.861 1.895 1.941 1.857 1.896 2.253 1.871 2.113

12 1.903 1.875 2.821 1.978 1.933 2.755 1.85 1.906 1.864 1.887 2.077

16 1.985 1.903 2.818 1.91 1.941 2.914 2.293 2.034 2.769 2.825 2.339

20 2.534 1.866 2.066 2.01 1.869 2.789 1.923 1.864 2.768 1.857 2.155

24 3.005 1.915 2.105 3.285 1.903 1.817 1.889 2.499 1.847 2.02 2.228

28 3.34 1.964 2.417 2.792 1.975 1.853 2.886 1.854 1.93 2.795 2.381

Table 4.50 – Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal PC for SVM
(kernel = rbf, gamma = auto)

71 California State University, Los Angeles

J.Nguyen

Fig. 4.29 – PC VS Average Time (ms) for PCA on Testing Data

4.2.2 Kernel Grid Search

For the kernel grid search, we look at the performance of the following kernels: linear,

polynomial, rbf and sigmoid. According to Table 4.57, the best performing kernel was the

polynomial kernel, followed by the rbf kernel. The polynomial kernel had the faster execution

time when compared to the rbf kernel (Table 4.53 and 4.54). Furthermore, when examining

the confusion matrix for the polynomial kernel (Table 4.52), there is less bias compared to

the confusion matrix for the rbf kernel (Table 4.45). Thus, we chose to use the polynomial

kernel as our optimal kernel.

72 California State University, Los Angeles

J.Nguyen

Kernel Accuracy

linear 0.670

polynomial 0.846

rbf 0.807

sigmoid 0.423

Table 4.51 – Grid Search for Optimal Kernel

Fig. 4.30 – Kernel VS. Accuracy for SVM

Class TPR FPR TNR FNR

AS 0.783 0.103 0.896 0.217

ST 0.897 0.217 0.783 0.103

Table 4.52 – Confusion Matrix for SVM after PCA (Accuracy = 0.846, PC = 20, kernel =
poly, gamma = auto, degree = 3)

73 California State University, Los Angeles

J.Nguyen

kernel Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

linear 1179.95 1204.19 1833.11 1198.13 1490.50 1181.80 1181.84 1250.11 1170.25 1823.33 1351.32

poly 560.36 544.10 558.73 555.55 840.60 543.85 549.92 540.80 566.54 860.48 612.1

rbf 555.16 530.43 537.30 574.7 834.53 531.09 775.54 538.06 535.87 546.92 596.0

sigmoid 970.88 1387.82 975.52 956.86 975.72 966.16 1398.38 957.68 954.82 973.70 1051.76

Table 4.53 – Grid Search Model Training Execution Time (ms) for Optimal Kernel for SVM (PC = 20, gamma =
auto)

kernel Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

linear 4.704 4.829 9.305 5.214 9.712 5.676 4.781 4.816 4.882 10.422 6.434

poly 3.96 3.914 3.891 3.905 7.23 3.956 4.071 3.992 4.147 6.683 4.575

rbf 7.855 6.944 7.097 6.937 14.117 6.956 13.679 7.114 7.005 7.281 8.498

sigmoid 8.545 13.978 8.376 8.853 8.327 8.808 12.644 8.291 8.366 8.412 9.46

Table 4.54 – Grid Search Model Execution Time (ms) on Testing Data Set for Optimal Kernel for SVM (PC =
20, gamma = auto)

kernel Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

linear 21.009 19.651 45.825 20.36 20.75 26.752 20.478 42.907 22.204 39.258 27.919

poly 20.473 21.252 20.712 20.468 40.328 21.838 19.601 44.985 20.985 33.482 26.412

rbf 19.663 27.112 23.12 20.211 53.327 20.528 20.304 19.725 19.971 22.746 24.671

sigmoid 22.178 20.593 26.112 33.39 20.581 19.661 51.026 19.848 21.43 22.028 25.685

Table 4.55 – Grid Search PCA Training Execution Time (ms) for Optimal Kernel for SVM (PC = 20, gamma =
auto)

kernel Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

linear 1.933 1.92 2.856 2.654 2.848 1.864 1.889 1.895 1.863 3.234 2.296

poly 1.867 1.863 1.866 1.866 2.762 1.927 1.884 1.949 1.88 3.141 2.101

rbf 1.886 1.842 1.889 1.868 2.816 1.887 2.839 2.269 2.114 1.899 2.131

sigmoid 1.946 2.83 1.906 1.855 1.982 1.974 2.823 1.865 1.884 1.858 2.092

Table 4.56 – Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal Kernel for SVM (PC = 20,
gamma = auto)

74 California State University, Los Angeles

J.Nguyen

4.2.3 Optimal Degree for Polynomial Kernel

Since we chose the polynomial kernel for the SVM algorithm, there is an additional

parameter that we need to optimize, the degree of the polynomial. The sklearn library

has this parameter default value set to 3 [22], but we perform another grid search to see if

changing the degree would improve the performance and execution times. We test degrees

between 2 and 10. As shown in Fig. 4.31, the highest accuracy produced was from a degree

of 3. The other degrees did not produce an accuracy over 0.8, so we choose a degree of 3 to

continue with the grid search without looking at the execution times.

Degree Accuracy

2 0.750

3 0.846

4 0.769

5 0.769

6 0.711

7 0.692

8 0.654

9 0.654

10 0.654

Table 4.57 – Grid Search for Optimal Degree for Polynomial Kernel (PC = 20)

4.2.4 Kernel Coefficient

The SVM function in the sklearn library has one more parameter, gamma, that we can

try to alter to improve the performance of the optimal parameter set we found. The gamma

parameter has 2 inputs: ”auto” and ”scale”. The default value for this parameter was set to

”auto” which sets the the kernel’s coefficient to Eq. 4.6. We test to see if ”scale,” which sets

the coefficient to Eq. 4.7, can improve the confusion matrix of the parameter set we chose.

75 California State University, Los Angeles

J.Nguyen

Fig. 4.31 – Degree of Polynomial VS. Accuracy

As seen in Table 4.58, the accuracy did not change between ”auto” and ”scale.” Further-

more, the confusion matrix for ”auto” (Table 4.45) and ”scale” (Table 4.59 are the identical.

Thereby, we conclude that the coefficient does not really impact the performance of our

model.

γ =
1

nfeatures

(4.6)

γ =
1

nfeatures ∗X.var()
(4.7)

76 California State University, Los Angeles

J.Nguyen

Gamma Accuracy Execution Time (s)

auto 0.846 0.898

scale 0.846 0.845

Table 4.58 – Grid Search for Optimal Gamma Value for Polynomial Kernel (PC = 20, kernel
= poly, degree = 3)

Class TPR FPR TNR FNR

AS 0.783 0.103 0.896 0.217

ST 0.897 0.217 0.783 0.103

Table 4.59 – Confusion Matrix for SVM after PCA (Accuracy = 0.846, PC = 20, kernel =
poly, degree = 3, gamma = scale)

gamma Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

auto 688.946 852.508 554.391 587.695 543.445 539.245 546.091 661.223 860.746 552.923 638.721

scale 846.344 832.143 554.013 546.912 562.571 558.343 543.365 817.445 834.553 544.719 664.041

Table 4.60 – Grid Search Model Training Execution Time (ms) for Optimal Kernel Coefficient (gamma) for SVM
(PC = 20, kernel = polynomial, degree = 3)

gamma Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

auto 7.205 7.322 3.969 4.15 3.865 4.025 3.923 7.092 7.455 3.928 5.293

scale 7.231 4.494 3.919 3.883 3.965 4.112 3.951 7.207 3.881 3.852 4.65

Table 4.61 – Grid Search Model Execution Time (ms) on Testing Data Set for Optimal Kernel Coefficient (gamma)
for SVM (PC = 20, kernel = polynomial, degree = 3)

gamma Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

auto 27.466 34.454 20.926 20.991 19.559 21.863 19.92 22.294 35.108 20.087 24.267

scale 35.521 35.15 22.508 19.956 21.245 21.116 20.139 52.406 35.896 29.88 29.382

Table 4.62 – Grid Search PCA Training Execution Time (ms) for Optimal Kernel Coefficient (gamma) for SVM
(PC = 20, kernel = polynomial, degree = 3)

77 California State University, Los Angeles

J.Nguyen

gamma Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 6 Trial 7 Trial 8 Trial 9 Trial 10 Average

auto 3.091 2.868 1.864 1.894 1.85 1.921 1.821 2.824 2.959 1.912 2.3

scale 2.824 2.031 1.869 1.913 1.891 2.061 1.904 2.769 1.845 1.834 2.094

Table 4.63 – Grid Search PCA Execution Time (ms) on Testing Data Set for Optimal Kernel Coefficient (gamma)
for SVM (PC = 20, kernel = polynomial, degree = 3)

After conducting the grid search we decided that the optimal parameters are: 20 PC,

polynomial kernel of degree 3 and a gamma set to auto. The SVM can be further improved

since the optimal confusion matrix we determined still showed some bias towards the ST

class. Improvements can be done by increasing the data set or creating a kernel that was

not built into sklearn.

4.3 Comparison

Both the random forest classifier and SVM algorithms each have their own strengths and

weaknesses, especially when it comes to our purposes. As seen in Table 4.64, the random

forest classifier algorithm was able to produce a better accuracy then SVM, but SVM has

faster model execution time. The PCA times for SVM were longer than the random forest

ones because there were more PCs calculated (SVM used 20 PCs and the Random Forest

model used 4 PCs). However, the random forest model times were higher than the SVM

model times. This could be because the random forest algorithm requires to execute multiple

decision trees, whereas SVM finds one singular hyperplane. Furthermore, the SVM optimal

parameter set (Table 4.52) produced a more biased confusion matrix while the optimized

random forest model(Table 4.33) shows a more balanced confusion matrix. In general, while

both models offer some benefits, they can be improved with further work such as examining

their errors to see what affected the models ability to classify images.

78 California State University, Los Angeles

J.Nguyen

Evaluation Parameters Random Forest SVM

Accuracy 0.865 0.846

Avg. Model Test Time (ms) 12.468 5.293

Avg. Model Train Time (ms) 832.77 638.721

Avg. PCA Test Time (ms) 0.235 2.300

Avg. PCA Train Time (ms) 2.549 24.267

Table 4.64 – Random Forest and SVM Evaluation Parameters

Hyperparameter Optimal Value

PC 4

Number of Trees 100

Min. Sample Leaf 4

Max Depth 20

Table 4.65 – Optimal Random Forest Hyperparameters

Hyperparameter Optimal Value

PC 20

Kernel poly

Optimal Degree for Polynomial Kernel 3

Kernel Coefficient auto

Table 4.66 – Optimal SVM Hyperparameters

4.4 Classification Errors

We can get more insights on why the models failed to correctly classify some of the videos

by looking further into those specific cases. For each model, we look closely to at an example

where each class was incorrectly classified.

79 California State University, Los Angeles

J.Nguyen

For the random forest classifier, the model incorrectly classified Test Images ID 1 and ID

12. Test Image ID 1 (Fig. 4.32) is classified as AS but the model classified it as ST. Test

Image ID 12 (Fig.4.33) on the other hand was incorrectly classified as AS by the random

forest classifier. A possible reason these 2 models were incorrectly classified could be because

of the signer’s eyebrow placement. In these 2 images, the eyebrow placement of the signers

look very similar, whereas in typical ASL AS and ST sentences, the eyebrow placement is

slightly different. AS tend to have a more furrowed eyebrow placement while ST has a more

neutral looking eyebrow. In these 2 example cases, the eyebrows appear raised which could

have confused the model.

For SVM, the model incorrectly classified Test Images ID 25 and 44. Test Image ID 25

(Fig. 4.34) is classified as AS, but was incorrectly classified as ST. Test Image ID 44 (Fig.

4.35) was incorrectly classified as AS when it was actually ST. Similar to the random forest

example cases, the eyebrows in these 2 images could have interfered with the model’s ability

to correctly classify it. In this case, the 2 example cases for SVM show a more neutral but

slightly raised eye brow placement, which is different from the typical eyebrow placement of

AS and ST sentences. This placement again could explain why SVM could not classify these

cases correctly.

Interestingly, the 2 example error cases from each model was correctly classified by the

other model. This could indicate that some models are better at classifying specific types of

sentences, but further research is required to know for sure. However, there was 1 test case

that both models incorrectly classified. Test Image ID 33 (Fig. 4.36) was classified as AS,

but was actually ST. This could be due to the misalignment in the coordinates derived from

Dlib. As seen in Fig. 4.36, the signer had his eyes closed and his head tilted back, causing

a slight error in the coordinates derived from the Dlib model. This could have caused both

models to incorrectly classify this image.

80 California State University, Los Angeles

J.Nguyen

Fig. 4.32 – Test Image ID 1

Fig. 4.33 – Test Image ID 12

81 California State University, Los Angeles

J.Nguyen

Fig. 4.34 – Test Image ID 25

Fig. 4.35 – Test Image ID 44

82 California State University, Los Angeles

J.Nguyen

Fig. 4.36 – Test Image ID 33

83 California State University, Los Angeles

CHAPTER 5

Conclusions and Future Directions

Real time language interpreting models have been proven very useful in today’s society,

as it works to reduce the language barrier among people and is more accessible due to the

advancement of mobile technology. However, current real time ASL interpreting models are

limited due to them being based solely on hand gestures and not taking into account facial

expressions, which play a fundamental role in ASL syntax. Furthermore, other attempts

at integrating facial expressions into real time ASL interpreting models such as generating

a facial mesh [33] or creating normalized facial distances between key points [19] are quite

computational expensive and would not work very well on mobile and embedded devices.

In our project, we have proposed creating a computational efficient sentence classification

model that will supplement these current hand gesture based ASL interpreting models.

For our project, we propose a new, computational efficient way to quantify facial ex-

pressions and we use this new way to train 2 different classification models to see how well

each one would perform. Initially, the models are trained to classify 2 types of sentences:

assertions and statements. We quantify facial expressions by calculating the angles between

key facial points and reduce dimensionality with PCA. From there, we implement 2 types

of classification models (random forest classifier and SVM) to see how well each one would

perform.

84

J.Nguyen

Further directions for this project include expanding the data set and its capabilities to

classify all 8 sentences present in ASL syntax. This project is currently able to classify 2

sentences types and to achieve real time ASL interpreting, all 8 sentences has to be classified.

To do so, we need to expand and diversify the data set. The dataset needs to have enough

data so that all 8 sentence types are represented and be diverse in the type of signers (i.e.

native, beginner, left handed, different ethnicities) so that the model trained will be able to

handle a more diverse user set.

85 California State University, Los Angeles

Bibliography

[1] Muzammil Abdulrahman and Alaa Eleyan. Facial expression recognition using Support

Vector Machines. In 2015 23nd Signal Processing and Communications Applications

Conference (SIU), pages 276–279, Malatya, Turkey, May 2015. IEEE.

[2] Muhammad Achirul Nanda, Kudang Boro Seminar, Dodi Nandika, and Akhiruddin

Maddu. A Comparison Study of Kernel Functions in the Support Vector Machine and

Its Application for Termite Detection. Information, 9(1):5, Jan. 2018.

[3] Charlotte Baker-Shenk and Dennis Cokely. American Sign Language - A Teacher’s

Resource Text on Grammar and Culture. Cleric Books, Gallaudet University Press,

Washington, DC, USA, 1980.

[4] Gérard Biau and Erwan Scornet. A random forest guided tour. TEST, 25(2):197–227,

June 2016.

[5] Hajar Bouirouga, Sanaa El Fkihi, Abdeilah Jilbab, and Driss Aboutajdine. Comparison

of Performance between Different SVM Kernels for the Identification of Adult Video.

5(5), 2011.

[6] Jair Cervantes, Farid Garcia-Lamont, Lisbeth Rodŕıguez-Mazahua, and Asdrubal

Lopez. A comprehensive survey on support vector machine classification: Applications,

challenges and trends. Neurocomputing, 408:189–215, Sept. 2020.

[7] Amanda Duarte, Shruti Palaskar, Lucas Ventura, Deepti Ghadiyaram, Kenneth De-

Haan, Florian Metze, Jordi Torres, and Xavier Giro-i Nieto. How2Sign: A Large-scale

Multimodal Dataset for Continuous American Sign Language. In 2021 IEEE/CVF

86

J.Nguyen

Conference on Computer Vision and Pattern Recognition (CVPR), pages 2734–2743,

Nashville, TN, USA, June 2021. IEEE.

[8] Kai-Yin Fok, Nuwan Ganganath, Chi-Tsun Cheng, and Chi K. Tse. A Real-Time ASL

Recognition System Using Leap Motion Sensors. In 2015 International Conference on

Cyber-Enabled Distributed Computing and Knowledge Discovery, pages 411–414, Xi’an,

China, Sept. 2015. IEEE.

[9] Sourish Ghosh, Anasuya Dasgupta, and Aleena Swetapadma. A Study on Support

Vector Machine based Linear and Non-Linear Pattern Classification. In 2019 Interna-

tional Conference on Intelligent Sustainable Systems (ICISS), pages 24–28, Palladam,

Tamilnadu, India, Feb. 2019. IEEE.

[10] Aditi Goel and Saurabh Kr. Srivastava. Role of Kernel Parameters in Performance

Evaluation of SVM. In 2016 Second International Conference on Computational Intel-

ligence & Communication Technology (CICT), pages 166–169, Ghaziabad, India, Feb.

2016. IEEE.

[11] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin. A Practical Guide to Support

Vector Classification.

[12] Tyler G. James, Kyle A. Coady, Jeanne-Marie R. Stacciarini, Michael M. McKee,

David G. Phillips, David Maruca, and JeeWon Cheong. “They’re Not Willing To Accom-

modate Deaf patients”: Communication Experiences of Deaf American Sign Language

Users in the Emergency Department. Qualitative Health Research, 32(1):48–63, Jan.

2022.

[13] Omer Karal. Performance comparison of different kernel functions in SVM for differ-

ent k value in k-fold cross-validation. In 2020 Innovations in Intelligent Systems and

Applications Conference (ASYU), pages 1–5, Istanbul, Turkey, Oct. 2020. IEEE.

[14] Vahid Kazemi and Josephine Sullivan. One millisecond face alignment with an ensem-

ble of regression trees. In 2014 IEEE Conference on Computer Vision and Pattern

87 California State University, Los Angeles

J.Nguyen

Recognition, pages 1867–1874, Columbus, OH, June 2014. IEEE.

[15] Davis E. King. Dlib-ml: A Machine Learning Toolkit. 10:1755–1758, 2009.

[16] Yuan Luo, Cai-ming Wu, and Yi Zhang. Facial expression recognition based on fusion

feature of PCA and LBP with SVM. Optik - International Journal for Light and Electron

Optics, 124(17):2767–2770, Sept. 2013.

[17] M. I. N. P. Munasinghe. Facial Expression Recognition Using Facial Landmarks and

Random Forest Classifier. In 2018 IEEE/ACIS 17th International Conference on Com-

puter and Information Science (ICIS), pages 423–427, Singapore, June 2018. IEEE.

[18] Abolfazl Nadi and Hadi Moradi. Increasing the views and reducing the depth in random

forest. Expert Systems with Applications, 138:112801, Dec. 2019.

[19] Tan Dat Nguyen and Surendra Ranganath. Facial expressions in American sign lan-

guage: Tracking and recognition. Pattern Recognition, 45(5):1877–1891, May 2012.

[20] E. Osuna, R. Freund, and F. Girosit. Training support vector machines: an application

to face detection. In Proceedings of IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, pages 130–136, San Juan, Puerto Rico, 1997. IEEE

Comput. Soc.

[21] A. Patle and D. S. Chouhan. SVM kernel functions for classification. In 2013 Inter-

national Conference on Advances in Technology and Engineering (ICATE), pages 1–9,

Mumbai, Jan. 2013. IEEE.

[22] Fabian Pedregosa, Gael Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand

Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent

Dubourg, Jake Vanderplas, Alexandre Passos, and David Cournapeau. Scikit-learn:

Machine Learning in Python. MACHINE LEARNING IN PYTHON.

[23] Derek A. Pisner and David M. Schnyer. Support vector machine. In Machine Learning,

pages 101–121. Elsevier, 2020.

88 California State University, Los Angeles

J.Nguyen

[24] V. Rodriguez-Galiano, M. Sanchez-Castillo, M. Chica-Olmo, and M. Chica-Rivas. Ma-

chine learning predictive models for mineral prospectivity: An evaluation of neural

networks, random forest, regression trees and support vector machines. Ore Geology

Reviews, 71:804–818, Dec. 2015.

[25] Lior Rokach. Decision forest: Twenty years of research. Information Fusion, 27:111–125,

Jan. 2016.

[26] Christos Sagonas, Epameinondas Antonakos, Georgios Tzimiropoulos, Stefanos

Zafeiriou, and Maja Pantic. 300 Faces In-The-Wild Challenge: database and results.

Image and Vision Computing, 47:3–18, Mar. 2016.

[27] Shikhar Sharma and Krishan Kumar. ASL-3DCNN: American sign language recognition

technique using 3-D convolutional neural networks. Multimedia Tools and Applications,

80(17):26319–26331, July 2021.

[28] Jungpil Shin, Akitaka Matsuoka, Md. Al Mehedi Hasan, and Azmain Yakin Srizon.

American Sign Language Alphabet Recognition by Extracting Feature from Hand Pose

Estimation. Sensors, 21(17):5856, Aug. 2021.

[29] Cheng Tang and Damien Garreau. When do random forests fail?

[30] Murat Taskiran, Mehmet Killioglu, and Nihan Kahraman. A Real-Time System for

Recognition of American Sign Language by using Deep Learning. In 2018 41st Inter-

national Conference on Telecommunications and Signal Processing (TSP), pages 1–5,

Athens, July 2018. IEEE.

[31] Michael E Tipping and Christopher M Bishop. Mixtures of Probabilistic Principal

Component Analysers. page 30.

[32] Omkar Vedak, Prasad Zavre, Abhijeet Todkar, and Manoj Patil. Sign Language Inter-

preter using Image Processing and Machine Learning. 06(04):4, 2019.

[33] Christian Vogler and Siome Goldenstein. Facial movement analysis in ASL. Universal

Access in the Information Society, 6(4):363–374, Feb. 2008.

89 California State University, Los Angeles

J.Nguyen

[34] C. Vogler and D. Metaxas. ASL recognition based on a coupling between HMMs and

3D motion analysis. In Sixth International Conference on Computer Vision (IEEE Cat.

No.98CH36271), pages 363–369, Bombay, India, 1998. Narosa Publishing House.

[35] Yingying Wang, Yibin Li, Yong Song, and Xuewen Rong. Facial Expression Recognition

Based on Random Forest and Convolutional Neural Network. Information, 10(12):375,

Nov. 2019.

[36] Michael Waskom. seaborn: statistical data visualization. Journal of Open Source Soft-

ware, 6(60):3021, Apr. 2021.

[37] Dujuan Zhang, Jie Li, and Zhenfang Shan. Implementation of Dlib Deep Learning Face

Recognition Technology. In 2020 International Conference on Robots & Intelligent

System (ICRIS), pages 88–91, Sanya, China, Nov. 2020. IEEE.

90 California State University, Los Angeles

	Introduction
	Background
	ASL Syntax
	Current ASL Models based on Hand Gesture
	Other Works in Facial Expression in ASL Interpreting Models
	Random Forest Classification Tree Model
	Support Vector Machine
	Principal Component Analysis (PCA)
	General Proposed Pipeline

	Facial Feature Extraction
	Introduction
	Data Set
	Dlib Library
	Changing Origin
	Angle Calculation

	Classification Model Pipeline
	Introduction
	Reducing Redundant Data
	Reducing Dimensions using Averaging
	Principal Component Analysis (PCA)

	Preliminary Classifiers Results
	Random Forest Classification
	Code Implementation
	Hyperparameters

	Support Vector Machine
	Code Implementation
	Hyperparameters

	Results
	Random Forest Classification
	PC Grid Search
	Number of Trees Grid Search
	Minimum Sample Leaf
	Max Depth

	Support Vector Machine
	PC Grid search
	Kernel Grid Search
	Optimal Degree for Polynomial Kernel
	Kernel Coefficient

	Comparison
	Classification Errors

	Conclusions and Future Directions

