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ABSTRACT 

Spatiotemporal Analysis of Spreading Depolarizations and Spreading Depressions 

By 

Axel Ochoa Aguirre 

Spreading depolarizations (SD) refer to ripples in the patient’s brain’s electrical 

activity that are associated with a depression of overall brain activity levels when the 

brain is damaged. One of our long-term goals is to develop a closed-loop stroke therapy 

which is continuously adapted and tailored based on the patient’s current brain state. 

Such a therapy will require us to explore spatiotemporal patterns that emerge.  With new 

microarrays developed to record simultaneously from many electrodes in awake behaving 

rats, our first step was to attempt to classify brain regions according to 

electrophysiological characteristics. We hypothesized brain regions affected by the stroke 

are distinguishable from healthy and compromised tissue by electrophysiological 

features. We first defined and measured electrophysiological characteristics on each 

channel. Then, we developed data analytics to cluster electrode channels by 

electrophysiological features, including SD peak amplitude, SD width, and baseline DC 

levels. K-means clustering classified channels into contiguous brain regions in 3 rats. In 

all three of the rats, the channels clustered into three physically contiguous brain regions, 

which we suspect correspond to injured, compromised, and healthy brain tissue regions. 

Our future work will explore where these depressions originate and how they spread 

across the brain as time progresses. 
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CHAPTER 1 

 

Measurable indicators of stroke 

 

1.1 Stroke Prevalence, Incidence, and Outcomes 

Strokes are one of the more deadly diseases in modern American times yearly nearly 

800,000 Americans suffer from some form of stroke with about 160,000 of those leading 

to deaths it is no surprise it holds a spot among the top leading causes of death among 

Americans [1]. Of these less lethal stroke patients 75% end up with some form of 

dysfunction, with 15% to 30% remaining with a severe disability that drastically changes 

their quality of life. 

Although there are up to five different types of stokes observed, ischemic stroke, 

hemorrhage stroke, transient ischemic attack, brain stem stokes, and cryptogenic stroke. 

The major ones are ischemic and hemorrhagic strokes, the rest can simply be described as 

variations of these two strokes [2]. Hemorrhagic strokes are caused by ruptures in arteries 

in the brain, these ruptures are mainly can be caused by high blood pressure and 

aneurysms. The second type of stroke, ischemic stroke, are by far the more common and 

are the focus of this study, this variation accounts for about 87% of all stokes [3]. These 

strokes are caused by a blockage in a brain artery. These blockages can be caused by 

blood clots, or fatty deposits which lead to loss of oxygen and subsequently tissue 

damage.  
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Figure 1.1: Depictions of the two types of strokes. Left depicts a blockage in an artery caused by 

a blood clot, the blockage prevents oxygen from reaching the brain thus causing an ischemic 

stroke. Right depicts a ruptured artery causing bleeding within the brain causing a hemorrhagic 

stroke [4] 

 

Stroke can lead to varying degrees of debilitation. Stroke commonly leads to 

motor control deficit, mobility impairment and speech impairment.  Stroke can be severe 

enough to lead to partial or complete paralysis and cognitive deficit.  Of course, if action 

to stop the damage is not taken quickly enough, stroke can be fatal. 

1.2 Current Treatments and Intervention 

Current treatments for stroke depend heavily on the circumstances in which the patient 

finds themselves when a suffering from a stroke.  
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Immediate treatment begins by removing the blockage causing the stroke this can be 

done in a variety of ways. Ideally treatment includes using a thrombolytic drug known as 

tissue plasminogen activator (tPA). Thrombolytic drugs are used to break up blood clots, 

using drugs to treat the stroke is ideal as it eliminates the need for surgery to physically 

remove the clot. Ideally tPA is administered within 30 minutes and is used as treatment if 

it can be administered within the first 3 hours of the stroke. If this threshold is exceeded 

or if the patient is not responding positively to the drugs, endovascular surgery is next 

best option to remove the clot, a catheter is inserted up the afflicted artery where a 

medical equipment such as suction tubes or claws are used to physically removes the 

blockage [5] [6] [7] [8] [9]. This procedure is ideally done within the first 6 hours of the 

stroke. From these procedures it is clear that a critical factor in stroke treatment is time, 

the longer the patient remains without treatment the more tissue is compromised and 

damaged. Moments immediately after the stroke are critical, there two main areas of 

interest in the brain at this moment, the area of the infarct otherwise known as the core, 

and the tissue region immediately surrounding it known as the penumbra. 

 

Figure 1.2: The core of a stroke with an outward expanding penumbra [10] 
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While the core tissue suffers from irreversible brought on by the ischemic stroke, the 

surrounding penumbra tissue is compromised; this tissue, with treatment, can repolarize 

diminishing or even eliminating long term heath issues. Live monitoring of tissue health 

in stroke is currently possible; but not practical as they either involve invasive surgeries 

or lack the resolution necessary to make sounds medical decisions. Our research seeks a 

less invasive, high-resolution method of classifying tissue health live, to aid patient 

treatment and recovery therapy.   

1.3 Electrophysiological Markers of Stroke – Spreading Depolarization, Depression 

To study strokes, we study spreading depolarizations (SD) in electrocorticographic 

(ECoG) data taken from surface electrodes implanted on subjects’ brain. SDs are benign 

events that are observed in normal electrical brain activity, they are associated with tissue 

damage as they have been known to manifest when patients suffer head trauma such as 

stroke, migraines, and the like. Although the SD events themselves are known to be 

mostly benign, they can be used as a marker of tissue health and thus we intend to use 

them their characteristics to analyze and classify tissue health. 

SDs appear as a relatively high amplitude triphasic wave form in the recorded 

electrical brain typically in the range 5 to 15mV in amplitude lasting for a 1 to 2 minutes. 

They originate in the area of the infarct in terms of strokes and tend to propagate 

outwards at speeds of 2 to 6 mm/min across brain grey matter [11] [12]. This propagation 

is what compromises the health of the local tissue that is not part of the area of the infarct 

to and spreads the effect strokes. SDs are cause by an imbalance of ions in the electrical 

potential in the dying cells. During the events of a stoke the sodium potassium pumps in 

the area of the infarct fail, typically they help maintain a healthy balance of K+, Na+, and 



 

 5 

Ca2+ ions balancing the incoming current with its own outward current. During the events 

of a stroke the NaCl pumps are unable to keep up with the persistent inward current and 

thus lose ion equilibrium within the cell. To maintain homeostasis, water rushes into the 

cells causing intracellular swelling and a dramatic decrease in the local electrical 

potential and thus the SD event. 

 

 

Figure 1.3 Comparison of healthy neuron against neuron with compromised NaCl pump [13] 

 

Spreading depressions are an induced after-effect of SDs, characterized prominently by a 

silencing in ECoG brain activity as well as decline in DC levels and are believed to be the 
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main cause of permanent brain damage. In healthy tissue, after the events of the SD the 

local electrical potential will typically stabilize at a lower baseline and in time will return 

to the baseline it had before the SD event. Under damaged tissue however the baseline 

decrease is not only more prominent, but the baseline does fully recuperate. We know 

there is a threshold in the ECoG potential if this threshold is met or exceeded the cell 

experiences an electrochemical energy breakdown, which is what is believed to cause 

irreversible brain damage. With each progressive SD lowering the electrical potential of 

the tissue we can logically conclude, the frequency and total number of SD events is 

directly related to state of health of the recorded tissue. 

1.4 Prospects for Future Stroke Therapies  

Acute stroke intervention has been described in Section 1.2.  The primary approaches of 

fibrinolysis via administration of anticoagulants and endovascular surgery are carried out 

as soon as possible in order to prevent tissue death and limit the initial infarct area [14]. 

However, as described, the damage can continue to spread despite the acute 

interventions.  Furthermore, surgical intervention is risky and can itself lead to 

complications and death.  Longer term treatment of stroke symptoms primarily involve 

physical or occupational therapy.  With improvements in high precision monitoring 

technology and the ability to monitor neurological changes continuously and chronically, 

there is hope of advancing treatment to further limit damage and improve the clinical 

outcome of the originating ischemic or hemorrhagic incident.  Some of these potential 

advancements in stroke therapy include cell transplantation and electrical stimulation 

[15]. Cell transplantation is a procedure that involves using stem cells to repair damaged 

tissue in the brain. Stem cell research fall under one of two categories, endogenous and 
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exogenous. Endogenous essentially refers to using stem cells that the body is already 

making in order to repair damaged tissue in the brain. The goal is to stimulate body into 

creatin more of these stem cells to help the body repair itself this is done using 

chemokine receptors such as stromal derived factor1 and integrin β1 or using electrical 

fields to direct these stem cells is also currently being investigated, research is developing 

but is still locked to preclinical studies. Alternatively, there are exogenous stem cells 

these are stem cells that are added into the body. There are three main variations to this 

procedure, immortalized cell lines, human derived stem cells, and bone marrow delivered 

cells. While these methods have been studied they have yet to be fully understood, 

though the conducted studies have concluded with promising results. Aside from the 

ethical issues regarding stem cells however there are other factor limiting this approach, 

such as supply limitations. 

Electrical stimulation is another stroke treatment that has been developing. So far 

there are both invasive and non-invasive treatments using electrical stimulation 

transcranial magnetic stimulation and implantable epidural electrodes, both treatments 

show promise to be beneficial to the patient. When the brain suffers from a stoke there 

remains a healthy hemisphere of the brain, the contralesional hemisphere. The electrical 

potential of this hemisphere has been shown to alter the electrical potential of the 

damaged hemisphere, the effects of this is still being studied whether it improves 

recovery or is detrimental to recovery. Therefore one of the goals of electrical stimulation 

aims to maintain a balance between these two regions of the brain, this is complemented 

by the fact that one of the benefits of electrical stimulation can be targeted affecting only 

select the regions of the brain. 
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CHAPTER 2 

 

Chronic Recordings in Awake Behaving Rats with Induced Stroke 

 

The experimental methods carried out by our collaborators at Duke University in Dr. 

Ulrike Hoffman’s laboratory will be described here in Ch. 2.  Their research group 

developed technology and methods to study the electrophysiological behavior in the 

cortex in vivo after ischemic injury.  In this chapter, the advances made in neural 

acquisition technology that enabled such studies and the experimental protocol used to 

acquire the data used in my thesis work will be described. 

2.1 Technical Advances in Micro ECoG Arrays 

Thus far, the ability to study how brain injury develops in stroke patients and how the 

electrophysiological manifestations correlate with clinical outcome have been limited.  

One current method of studying strokes involves studying the brain postmortem.  This is 

done by immunohistochemically staining slices of the patient’s brain to analyze the effect 

the stroke had on the brain. Immunohistochemistry only provides a snapshot of the 

brain’s chemical composition once the patient is deceased.  Obviously, the progression of 

the stroke in real time cannot be studied this way.  

Different studies have used various variables some of the more common ones 

include intracranial pressure, cerebral perfusion pressure, local tissue partial pressure of 

oxygen, and scalp electroencephalography to name a few. While the analysis of these 

results have shown promise in giving information of the progress of brain tissue health. 

One variable that has yet to be fully explored includes electrocorticographic (ECoG) 
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brain activity. Chronic electrophysiological recordings potentially provide a method by 

which the effects of stroke in vivo in real time could be studied. 

To study these electrophysiological patterns, simultaneous recordings from across 

the affected cortical region would be required.  Such studies would require invasive 

intracranial surgery in order to implant an electrode array onto the surface of the brain.  

Thus, we chose to study the phenomenon of stroke-related spreading depolarization in 

animals first with the expectation that these results will inform future clinical studies.  

The analysis in this thesis was conducted on electrophysiological data acquired from an 

electrode array.  This section will discuss the developments made in the technology of 

micro electrode arrays in order record ECoG data that differentiate our data from other 

currently available methods and data.   

There are microelectrode arrays already developed for in vivo recordings among 

these are intracortical microelectrodes, with are mainly used in pre-clinical research. The 

main disadvantage to these recordings is the fact that the surgery needed to properly place 

these recording electrodes requires the patient to be anesthetized and therefore leads to 

short term non-survival trials. The fact that viable electrode sites are limited, and the 

patient is not awake and moving, results in potentially distorted data.   

A second method of recording data in pre-clinical research are epidural recording 

screws, these are electrodes that are physically screwed into the subjects’ skulls. The 

advantages to this method involve, being able to perform this procedure without needing 

to anesthetize the subjects. Unfortunately, this procedure to results in low resolution data 

recordings, too low for the purposes of accurately studying SDs and are thus less than 

ideal. 
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Finally, there are linear electrode arrays, these electrode arrays typically contain 

four to six electrodes typically with a 4mm diameter. This electrode strip is surgically 

implanted on the surface of the subject’s brain. One of the drawbacks of this method is 

this type of electrode array requires intracranial surgery on a stroke patient, aside from 

adding the unnecessary risk of surgery complications to the patient the electrode array 

needs to be precisely implanted directly over the area of the trauma. This coupled with 

that fact that the electrode has a such a low electrode density, makes detection of SD 

events a challenge even if properly implanted. 

This led to the development of custom-made electrode array designed by Dr. 

Jonathan Viventi and his research team at Duke University. This custom 60 channel 

electrode array is outfitted with high-density μECoG, platinum iridium coated gold 

electrodes to reduce the impedance which achieved levels of ~600 to 700 kΩ at 0.5Hz. 

The electrodes were DC coupled to five recording screws using a follower circuit with ~1 

GΩ impedance; the screws were tapped into the subjects’ skulls down to the dura, 

connected to one another using silver wire, the recorded signals of the recording screws 

are then averaged. The overall electrode array has dimensions of 3.4 mm by 3.4 mm 

allowing for recording of data at the area of the infarct as well as the surrounding tissue. 

With a thickness of less than 50 µm, this electrode array can easily be implanted beneath 

the subject’s skull without requiring major surgery; with the added benefit of being thin 

enough to not disrupt local brain activity.   
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Figure 2.1: Depiction of the developed micro electrode array developed by Dr. Viventi for the 

purposes of this study [16] 

Moving on to the data acquisition hardware the typical high pass filter used in headstage 

amplifier is removed, the overall gain is reduced to x3, and accommodated the input 

range of the ECoG data and SDs events. These augmentations allow for the recording of 

ultra-slow, near DC levels ECoG signal recordings. Next an 18-bit analog to digital 

converter is used, all tethered using silver wires to allow for low noise data recordings of 

in vivo ECoG data signals [17]. 

2.2 Stroke Model 

Initially to test the performance of the electrode array developed by Dr. Viventi two rats 

were used as subjects where SDs were induced by exposing the subjects’ frontal cortex to 

topical doses of KCl. The subjects’ ECoG activity was then monitored by implanting 

both the developed electrode array along with glass microelectrodes implanted into the 

subjects’ brain parenchyma. 

The recorded data was taken with a focal cerebral ischemia induced into to the 

subjects’ brain. Three days after the electrode array was implanted in 20 of the rat 

subjects’ brain, the subjects were once again operated on undergoing middle cerebral 
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artery occlusion (MCAO), the external carotid artery was isolated and blocked off by 

inserting commercially available nylon monofilaments for 60-90 minutes. The 

monofilaments were then removed, and wounds were closed, to allow for reperfusion. 

Immediately after anesthesia wore off, medical analysis was done to assess the success of 

stroke induction as well as mortality, of the surgery. 

 

Figure 2.2: Photograph of rat subject post surgery, with recording equipment set [18] 

2.3 Experimental Paradigm 

Dr. Ulrike Hoffman and her team at Duke University recorded ECoG data signals in live 

rats by surgically implanting an epidural micro electrode array, onto the surface of a 

subjects’ brain activity.  A total of 25 rat subjects were awake and aware while their 

ECoG brain activity is measured, using the 60-channel electrode array custom designed 

and developed by Dr. Jonathan Viventi’s research group at Duke University. A stroke 

was then induced by Dr. Hoffman’s team and the various subjects’ activity was recorded. 

The rats were awake behaving anesthetized after the stroke was induced until their death 

which varied from 1 to 21 days. The ECoG brain activity of a seven of the rats, described 

in table 1.1 were shared with us to analyze in CSULA. 
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Rat 

Number 

Time Recorded 

(Days) 
Immunohistochemistry 

9 1 

 

10 No Information No Information 

11 8 
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16 12 

 

17 11 

 

18 18 

 

Table 1.1: Immunohistochemistry result shared with CSULA by Dr. Hoffmann  
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CHAPTER 3 

 

Data Analytics 

 

Various signal processing tools and data analytics were used to analyze the ECoG data and 

explore spatiotemporal patterns in the population signals.  The methods for detection of the 

SD events are first described, followed by feature extraction of these SD events. The 

chapter delineates the methods used to search for patterns across the electrode array using 

cross correlation metrics, and concludes with a description of the clustering technique 

applied to the population ECoG data in an attempt to classify regions of the cortex into 

different health states. 

3.1 Correlation Metrics 

Upon initial inspection of the raw data as seen in Fig 3.1 below, a stereotyped 

pattern emerges, with features which distinguish some channels from each other. Some of 

the data channels appear stay at a relatively stable level, the amplitude of the signal remains 

overall constant throughout the recording, while other signals’ average value consistently 

decreases as time progresses. We hypothesize, the data channels with the greatest decline 

in electrical activity correspond to the electrodes recording the electrical activity over the 

area of the stroke. 

The start and stop of manually detected ground truth SD events are demarcated in 

Fig. 3.1 by the green and red markers, respectively. The marked SD events in all data 

channels in this sample recording exhibit a similar stereotyped triphasic waveform. A 
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steady decline in the overall electrical potential is also visible on a number of the data 

signals. 

 

Figure 3.1: ECoG data recording of rat 9 in file 5 with green lines depicting SD event beginning 

times and red lines indicating event end times. The start and end times were marked by an SD 

expert and were used as our ground truth to develop our SD event detection algorithm. 
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Figure 3.2: Recorded ECoG data of rat 17 data file 3, SD events’ start and end times are denoted 

by green and red lines respectively. Unlike rat 9 file 5 the SDs in this data file are not as 

prominent and obvious, hence the need for a math algorithm to calculate correlation metrics.  

 

This is not the case for all data sets; however, we suspected that there was 

correlated activity that was propagating across the array because the neurons that are in 

the region covered by the array are potentially in an interconnected neural network.  The 

Pearson correlation coefficient between each pair of channels was calculated according to 

Eqn. 1, using the MATLAB’s built-in function corrcoef to see how strong linear 

relationships were, if any, existing that cannot be seen with the naked eye.  

𝑟𝑟 =
∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦)

�∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2∑(𝑦𝑦𝑖𝑖 − 𝑦𝑦�)2
 

Equation 1 
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where r, corresponds to the correlation metric; xi and yi correspond to the ith sample of 

signals x and y, respectively; and 𝑥𝑥 and 𝑦𝑦� correspond to the mean value of the respective 

data signal. 

We know the electrochemical imbalance during a spreading depolarization 

propagate across the network and the spread and propagation velocity can be determined 

by using information derived when cross correlating the signals. Thus, even if the 

correlation coefficients were low, there could be a relationship and connections between 

the channels but due to network propagation delay could have phase delay.  Therefore, 

cross-correlation between pairwise channels was additionally computed using MATLAB’s 

xcorr function. The function calculates the correlation between two signals x[n] and y[n] 

at time lags from –N to N, according to Eqn. 2. 

𝑅𝑅�𝑥𝑥𝑥𝑥(𝑚𝑚) =

⎩
⎨

⎧ � 𝑥𝑥𝑛𝑛+𝑚𝑚𝑦𝑦𝑛𝑛∗
𝑁𝑁−𝑚𝑚−1

𝑛𝑛=0

, 𝑚𝑚 ≥ 0

𝑅𝑅�𝑦𝑦𝑦𝑦∗ (−𝑚𝑚), 𝑚𝑚 < 0

 

Equation 2 

where 𝑅𝑅�𝑥𝑥𝑥𝑥(m) is the resulting correlation coeeficient between signal y (or y[n]) and signal 

x delayed by m lags (or x[n+m])  

The xcorr function does not normalize the data, therefore the signals were 

normalized manually before they were inputted into the xcorr function. The DC baseline 

for each channel is computed by taking the mean 𝑥𝑥𝚤𝚤�  of the respective channel’s ECoG 

across time, according to Eqn. 3. 

𝑥𝑥𝑖𝑖 =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖(𝑛𝑛)
𝑁𝑁

𝑛𝑛=1

 

Equation 3 
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where xi(n) corresponds to the nth sample of the ith channel from 1 to 60, and N corresponds 

to the total number of samples in the current data file.   

The DC baseline values were then stored for feature analysis described in Sec. 3.1 and 

removed from the raw ECoG according to Eqn. 4. 

𝑋𝑋𝑖𝑖 = 𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖 

Equation 4 

The raw data signal 𝑥𝑥𝑖𝑖 was then adjusted by subtracting the mean. The cross correlation 

was then applied to the resulting normalized data signals. 

For each channel i, cross correlation function Rij[l] with each channel j was computed 

across lags l according to Eqn. 2. Fig. 3.3 shows the cross-correlation function for each 

channel with the arbitrarily selected, channel E6. We can clearly see a pattern in the 

correlations plots; where the north west side of the electrode array displays a high 

correlation metric in the negative lags, as well as the positive lags, but remains negatively 

correlated in the center zero lag. Conversely in the south east side of the electrode array, 

there is high correlation in the center zero lag while the negative and positive lags remain 

negatively correlated.  This indicates a propagation of activity across the array from the 

northwest generally toward the southeast end. 
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Figure 3.3: Graphs depicting the cross correlation of data channel E6 against every other 

channel on the electrode array as indicated above each subplot. Correlation coefficients at 

each lag were obtained by shifting E6 in time in both the positive and negative direction. 

Although an 8 by 8 array was used when recording data only 60 of the data channels 

were used the unused data channel are depicted as DNE in the set of correlation functions 

depicted; as shown in Fig. 3.4 

In order to further analyze patterns in these cross-correlation functions we stored a set of 8 

by 8 matrices, populated with correlation coefficients at specified lags. In order to get a full 

picture of what is going on throughout the functions we take evenly spaced samples across 

the entire function. To do this we begin with a sample of the center zero lag and take 

samples every 192 seconds in both the positive and negative directions of the lags. These 

correlation metrics are then stored, with the elements corresponding to the unused 

channels, according to Fig. 3.4 set to “NaN”. 
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Figure 3.4: Depiction of the placement of the electrode array in reference to the subjects’ skull. 

Unused data channels are blacked out. 

 

These matrices are then mapped onto heatmaps in order to visualize the correlation 

across the array and changes over time shifts.  A higher correlation value will be indicated 

by a “hotter” color (closer to the red wavelengths) and lower values will be indicated by 

“cooler colors (closer to blue wavelengths). Using these heatmaps we more easily analyze 

the data looking for any form of spatiotemporal shifts.  

Ideally we hope to see a gradual spread of some kind across the electrode array.  

We hypothesized that because the stroke would originate in a specific section of the 

electrode array, as the stroke progresses we expect to see the afflicted area spread radially 

across the electrode array. Fig. 3.5 shows an example of a spatial map of the correlation 

values with a given channel across the array at various lags across the range of possible 

lags.  Starting at the center, the time lag equals zero, seven lags are considered, shifting the 

selected reference channel’s signal using intervals of 192 seconds, in the positive (moving 

right then down from the center in Fig. 3.5) and negative time direction (moving left then 
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up from the center).  We can see in the heatmaps in Fig. 3.5 at zero time shift we have split 

in the data where the north west side of the electrode array is negatively correlated denoted 

by the blue coloring contrasting the south east side of the array which is positively 

correlated denoted by the yellow. As we increase the negative time lag of the reference 

channel E6, we see the north west side of the array shift towards positive correlation; this 

indicates that a common pattern of activity reaches electrode E6 later than the channels on 

the northwest end of the array.  Conversely if we apply a positive time shift to the reference 

channel, the signals becomes more negatively correlated towards the south east side of the 

array. These results indicate that there exists some pattern of activity propagates from the 

northwest to the southeast side of the electrode array over several minutes (~25 minutes). 

We believe this is the result of how SD events propagate through the subject’s brain. 
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Figure 3.5: Correlation metrics are sampled using evenly spaced time lags, such that the 

reference channel is shifted in fixed increments of time. The resulting correlation metric is 

mapped onto a heat map to visualize how the activity is spreading across space over time. 

3.2 SD Detection 

Our goal is to classify the data, to do this first we need to identify and compute 

significant features contained in the data. The initial features attempt to identify are peak 

to peak amplitude and duration of the SD event. To do this the team initially developed a 

graphical user interface where an expert in SDs at Duke University, can easily load and 

explore select data sets in order to manually identify where these SDs are occurring with 

start and stop markers, an example is depicted in Fig 3.1. Using this information as our 

ground truth we worked to develop a MATLAB algorithm that can automatically detect 

SD events.  

We know an SD event is primarily characterized by a basic triphasic wave form, 

therefore we develop an algorithm that detects what we define as ‘peaks’ and ‘valleys’. A 

peak is defined as a point in which the data reaches a local maxima, while a valley is 

defined as when the data reaches a local minima. We approximate a derivative of the raw 

ECoG data by calculating its Euler difference as shown in Eqn. 5, we label this output data 

prime (𝐷̇𝐷). 

𝑓𝑓′(𝑥𝑥) = 𝑓𝑓(𝑥𝑥 + ∆) –  𝑓𝑓(𝑥𝑥) 

Equation 5 

where we define delta as a small value relative to the data set.  We chose to use the value 

of 20 seconds as this is how long peaks in SD events last. Using this data set we know the 

zeros of 𝐷̇𝐷 can be used to determine where in the raw data these peaks and valleys exist. 

This process gives us markers to the samples where a local extrema exists in the raw data, 
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but it does not tell us whether they are peaks or valleys. Therefore, a second derivative is 

calculated using the aforementioned process. This new data set which we label data 

double prime (𝐷̈𝐷), by looking at where 𝐷̈𝐷 crosses the x axis we can use the second 

derivative can be used to determine the concavity of the extremas calculated by 𝐷̇𝐷, thus 

labeling them as either peaks or valleys. [19] 

 

 

Figure 3.6: Detection of spreading depolarization events entailed: A) The ECoG signal 

from channel G1 with the ground truth start and end times manually marked by an SD 

expert. The green vertical line indicates the ground truth for the start of an SD and the red 

vertical lines corresponds to the ground truth of the end of an SD. B) The first order 

difference of (A) with the start and end times also marked in the same fashion. Peaks are 

also marked in dark blue, and any valleys are marked in cyan. C) Second order difference 

which was used to determine the 0-crossings in (B). 
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Knowing the nature of SD events, we seek triphasic a pattern of valley-peak-

valley within an acceptable time frame. The algorithm begins by taking the derived peaks 

and searching for a valley both before and after the observed peak, these paired valleys 

must be within a time window of 50 seconds, if these conditions are met the algorithm 

denotes the event within elapsed time frame as an SD event, otherwise the peak is 

discarded and labeled as a false positive.  

Problems arise with this method however, normal background ECoG brain 

activity that is not filtered out as noise can fit this description and be falsely label as a SD 

event. To filter these false positives we set a second condition taking advantage of 

another defining characteristic of an SD event, we take the largest SD event in the bank 

of derived events and set an arbitrary threshold of 65%. We then comb through the SD 

events, if they have an amplitude less than 65% of the largest recorded SD event, then it 

is discarded as a false positive caused by background brain activity otherwise it is labeled 

as a true positive. 

3.2.1 SD Event Features 

SD events were quantitatively characterized by identifying and measuring two key 

features:  peak-to-peak amplitude and duration of the SD event. The SD event detection 

and feature extraction described in this subsection was developed and carried out by 

Andrea Abelian, an undergraduate research assistant in Dr. Won’s lab. Once the times of 

the SD events are detected, the maximum and minimum amplitude values within the SD 

event window are determined.  The duration of the SD event was defined as the time from 

the inflection point before the first valley in the first derivative until the inflection point 

after the second valley. 
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Figure 3.7: Depicting what the features extracted from each of the SD events, the red lines denote 

the markers time stamps the program used to derive the length of the SD event, the black lines 

denote the markers the program used to derive the amplitude, of the SD event. 

  

These features were extracted for each detected SD in each data channel. Once all 

data channels in the data file have been logged the program looks through each data 

channel’s recorded SD events and looks to match it to recorded SD events in other data 

channel’s; if no matching SD event was recorded a zero-padding event is created and 

inserted with the appropriate time signature. This process is done in order to keep the total 

number of SD events per data channel consistent throughout each data file, and because an 

absence of an SD event that is present in other data channels is also a significant feature. 

The final table of receded SD events is logged into an Excel spreadsheet file.   

3.3 DC Baseline Analysis 

The next feature we measured about is the DC baseline of the raw data. The literature points 

to evidence that if the electrical potential depolarizes past some threshold, that neural tissue 
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reaches a point of no return, and the tissue dies [20].  In order to quantify this, we first 

record the average data channel’s DC baseline. Individual channels are loaded in and fed 

into the built in MATLAB function polyfit in order to calculate the best fit first-degree 

polynomial, or line, for the ECoG signal of each channel. The coefficients of this simple 

linear regression function return the overall slope and DC offset of the recorded data. 

�
𝑦𝑦1
𝑦𝑦2� = �

𝑝𝑝1
𝑝𝑝2� �

𝑥𝑥12 𝑥𝑥11

𝑥𝑥22 𝑥𝑥21
� 

Equation 6 

Polyfit uses the matrix algebra of Eqn. 6 where the 𝑝𝑝𝑚𝑚 matrix is the weights needed 

to take the inputs, the 𝑥𝑥𝑚𝑚𝑛𝑛  matrix, to the output values, the 𝑦𝑦𝑚𝑚.   

One problem we have with this process however, is the change in the DC baseline 

level is not always linear. Some data sets seem to have a steady decrease in potential energy 

while other a more exponential decent that later seems to stabilize. In order to improve the 

accuracy of this feature we opted to split the data in two; the data is split at different 

intervals and best fit lines are derived. While alternative methods can be used such as 

potentially fitting the data onto an exponential function, some advantages to using this 

piece wise linear regression is we have more potential features to extract as well as getting 

an idea of local average offset. This contrasts with the exponential fit; it would output a 

single offset value that depending on the data channel observed may not yield an acute 

representation of how the average offset changes over time. Local offset is an important 

feature to monitor, we know there is a point of no return in the ECoG we need to look out 

for.  
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Figure 3.8: Best fit line is calculated and superimposed onto the raw data signal used to 

calculate said best fit line. The best fit line does capture a good image of what is going on 

overall but the nature of the best fit line fails to capture important key concepts such as 

the steep slope seen in the beginning of the recording before the first SD event 
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Figure 3.9: Piece wise best fit lines are calculated using split data files rather than the 

entire recording, the steep slope seen before the first SD event is now better represented it 

is logged in the first best fit line’s slope. 

 

In order to further improve the base line metric; we calculated best fit lines over 

individual SD events to do this we began by taking the data of record SD events. The 

duration of all record SD events in the data file are compared isolating the longest lasting 

event in the data file. A window is then created, using half the length of the longest event 

as a buffer to be used both before the detected event start marker, and the after the event 

end marker. This method creates a unique window to be used for each SD event. A 

simple linear best fit line will not work for this application as in this time scale the nature 

of the SD events, to spike in both positive and negative directions, will skew the best fit 

line. To fix this problem a moving average is calculated, using Eqn. 7, using a large 
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window in order to “flatten” the SD event while keeping the amplitude decrease brought 

by the depression event. 

𝑦𝑦(𝑛𝑛)
𝑙𝑙

 =  � 𝑥𝑥(𝑘𝑘)ℎ(𝑛𝑛 − 𝑘𝑘)
𝑤𝑤

𝑘𝑘=−𝑤𝑤

 

Equation 7 

A basic convolution between x, the raw data signal, and h, an array of ones, 

outputs y; and by dividing l, the length of h, we get the moving average value for the 

specific point. The length of h can be adjusted by increasing the window we use more 

surrounding points to weight down the amplitude spikes caused by the SD events; a too 

large window however will result in a skewed average. A best fit line is then calculated 

using the moving average data points in the derived window of the SD event. This results 

in a trendline that gives us the change in amplitude caused by the SD event and 

associated depression as well as the current amplitude of the data signal at the time of the 

recorded SD event. 
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Figure 3.10: The blue data signal is the raw ECoG signal, the black line is the moving 

average resulting signal, the green and red vertical lines represent the considered 

window’s start and stop times respectively, the magenta lines denote the derived best fit 

line of its respective SD event 
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CHAPTER 4 

 

Clustering of ECoG Features by Tissue Health / State 

 

After key electrocorticographical features were defined, the question remained whether 

these features have any significance regarding the brain tissue health. These features were 

derived, logged, and then fed into a clustering algorithm in order to segregate data 

channels in this new feature space. The methods used for these clustering algorithms as 

well as the results and what this means for our hypothesis is explored in this chapter. 

4.1  K-Means Clustering 

In the previous chapter we discussed key features taken from the raw ECoG data, average 

DC baseline, average slope, duration of the SD event, as well as the peak-to-peak 

amplitudes of the SD events, the average DC baseline of each SD event as well as the 

average slope of each SD event. We took these features and ran them through a k-means 

clustering algorithm. A k-means clustering is an unsupervised algorithm which 

transforms the ECoG waveforms into a set of features in a new multi-dimensional space.  

We can visualize the ECoG data by reducing the dimensionality to 2 or 3 using principal 

component analysis and plotting each channel at its feature coordinates. The k-means 

algorithm initialized the clusters with k randomly selected centroids. Each data point was 

then assigned to the nearest centroid; this is done by calculating the Euclidean distance 

between the current data point and each of the centroids, using Eqn. 6, the data point is 

assigned to the centroid that returns the smallest distance. 

𝐶𝐶 = �(𝐴𝐴2 − 𝐴𝐴1)2 + (𝐵𝐵2 − 𝐵𝐵1)2 
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Equation 4.1 

Once all points have been assigned, the center of the clustered points is calculated, the 

centroid is moved to this derived center and the algorithm is run again with the new 

centroid locations reassigning data points to better fitting centroids if needed. The 

algorithm is repeated a preset number of times, for our application we used ten total 

replicates to ensure the algorithm properly finishes clustering the data points.  

4.2  Determining Number of Clusters 

We need to determine the best value of k to use for this k-means algorithm. To do this we 

run the algorithm multiple times using different values of k. Each time the algorithm is 

run we calculate the distortion metric we do this by calculating a simple Euclidean 

distance metric, as shown in Eqn. 4.1, from the centroid to each of the clustered channels 

in pc space. The value of this distortion metric is taken and averaged out with the rest of 

the clusters in each iteration of the k-means algorithm; the final distortion metric value is 

then stored. We ran this loop for values of k from one to ten. The average distortion 

metric values are then plot onto graph to more easily visualize the data and we see an 

elbow develop around the values of three and four. Thus we use k equal to three for our 

algorithm. 
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Figure 4.1: Distortion metric decreases as number of clusters k increases, but there are greatly 

diminishing returns after the “elbow” in the curve, which occurs at k=3. 

 

4.3  Mapping clusters onto physical location 

Using a value of 3 for our clustering algorithm took the output and mapped it onto a color 

coded 8 by 8 matrix in order to better visualize what data channels are being grouped 

together. The results are shown in the figures below. Additionally, the raw data was then 

also color coded and again in order to better visualize how the data was being grouped 

together.  
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Figure 4.2: Results of the clustering algorithm for rat 9 file 5 plotted in space and color coded, 

unused channels are denoted with white space. The figure shows promising results as the 

segregated channels form contiguous regions. 
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Figure 4.3: Figures depicts the result of the clustering algorithm results for rat subject 9 file 5. 

Left is the raw ECoG data, right is the same data channels color coded based on the clusters.  

 

 

Figure 4.4: Results of the clustering algorithm for rat 9 file 6 plotted in space and color coded, 

unused channels are denoted with white space 
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Figure 4.5: Figures depicts the result of the clustering algorithm results for rat subject 9 file 6. 

Left is the raw ECoG data, right is the same data channels color coded based on the clusters. 

 

 

Figure 4.6: Results of the clustering algorithm for rat 16 split file 2 - 1 plotted in space 

and color coded, unused channels are denoted with white space 
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Figure 4.7: Figures depicts the result of the clustering algorithm results for rat subject 16 

split file 2 - 1. Left is the raw ECoG data, right is the same data channels color coded 

based on the clusters. 
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Figure 4.8: Results of the clustering algorithm for rat 16 split file 2 - 2 plotted in space 

and color coded, unused channels are denoted with white space 
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Figure 4.9: Figures depicts the result of the clustering algorithm results for rat subject 16 split file 

2 - 2. Left is the raw ECoG data, right is the same data channels color coded based on the 

clusters. 

 

 

Figure 4.10: Results of the clustering algorithm for rat 16 split file 2 - 2 plotted in space 

and color coded, unused channels are denoted with white space 
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Figure 4.11: Figures depicts the result of the clustering algorithm results for rat subject 16 split 

file 2 - 3. Left is the raw ECoG data, right is the same data channels color coded based on the 

clusters. 
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Figure 4.12: Results of the clustering algorithm for rat 17 file 3 plotted in space and color coded, 

unused channels are denoted with white space 

 

 

Figure 4.13: The result of the clustering algorithm results for rat subject 17 file 3. Left is the raw 

ECoG data, right is the same data channels color coded based on the clusters. 
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Figure 4.14: Results of the clustering algorithm for rat 18 file 3 plotted in space and color coded, 

unused channels are denoted with white space 

 

 

Figure 4.15: The result of the clustering algorithm results for rat subject 18 split file 3. Left is the 

raw ECoG data, right is the same data channels color coded based on the clusters. 
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The results are clustering algorithm depicted on Figures 4.2 – 4.15 show mixed 

results. We have results such as rat 9 where the ECoG data shows very prominent 

features that make is easy to differentiate tissue both extract and differentiate from one 

another. This outputs promising results we can see the color coded clustered special map, 

even when the algorithm had no information as to where the channels lie in space the 

algorithm segregated the channels into contiguous regions. These results lead us to 

believe the algorithm with some degree of error can successfully identify tissue health 

using only the derived ECoG features.  

In comparison, data sets like rat 16 do not show as clearly defined borders nor do 

the channels that were classified together according to the ECoG features cluster in as 

contiguous a region as with Rat 9. Furthermore, even when looking at the color coded 

raw ECoG data, there do not appear to be distinguishable features within clusters that set 

them apart from the other two clusters. The results might indicate that tissue damage does 

not necessarily spread in radially concentric contiguous regions and we cannot determine 

tissue health from the visual characteristics of the ECoG features.  On the other hand it is 

possible that we simply are not able determine the status of tissue health using the 

features we selected and extracted from the ECoG data.  

The results from rat 9 lead us to believe it is possible to classify tissue health with 

the given information. The results for rat 16 can be attributed to the data files themselves 

being less than ideal data. In rat 16 data file 2 -1 for example, apart from the few data 

channels that seem to be bad recordings, the data channels seem to follow the same 

overall shape they remain at a similar offset level with little variance between them, no 
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group of data display collective change in amplitude. Additionally, we know there is a 

silencing component to SD events that we have not yet fully explored. From what we 

have observed silencing events do not always have a prominent SD event preceding so in 

data sets like rat 16 where amplitude across the data channels remains consistent and SD 

events are not as prominent, using silencing as a metric to classify the data may improve 

our results. This can be said about the rest of the data files for rats 17 and 18 the 

algorithm determined there are no outstanding collection of data channels from the rest.  

One improvement to be made to the detection algorithm would be to incorporate 

silencing as a key feature.  While our algorithm shows promise for the feasibility of using 

ECoG features from the epidural ECoG arrays to determine which areas of the penumbra 

have the greatest likelihood for reversal of damages and which are most at risk for 

impending necrosis, a major limitation of our current methods include the fact that the 

algorithm does not define which cluster is are classified as healthy, compromised, and 

damaged.  Thus, we must rely to some extent on expert opinion from 

immunohistochemical analysis along with other clinical data to use as ground truth in 

validating our models.   

4.4  Relating clusters defined by electrophysiological features to tissue health 

With the results of the clustering algorithm, depicted in the images below we next need to 

validate our model. This can be done in several different ways, unfortunately the only 

results of the subjects’ immunohistochemistry are the displayed tissue stains analysis 

postmortem. The brain is sampled coronal slices and staining said slices to depict the area 

of the infarct. To show how our results compares to the immunohistochemistry we have 
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available to us the resulting heatmap representing what the algorithm classifies as 

healthy, compromised, and damaged tissue; superimposed into the stained tissue sample.  

 

The results of rat nine are mostly resemble what we were hoping to see as the outcome 

the clustering algorithm. The algorithm has no information as to where the data channels 

lie in space, regardless, when the segregated data channel are plotted in space the three 

clusters form contiguous regions. What is even more interesting is the fact that the results 

of the clustering algorithm seem to closely resemble the final immunohistochemistry 

where the northeast side of the array reflects the damaged tissue, blue, and southwest side 

of the array depicts the compromised tissue, black. 

We expected rat nine to perform the best as its recorded ECoG data contains very 

prominent features. Aside from very prominent features rat nine also had total life span of 

only one day, which may have aided in a more accurate diagnosis of tissue health as the 

postmortem tissue health would be more in line with any data file as the recordings are 

within 24 hours of one another. 

Conversely the rats which lived longer the final tissue diagnosis is significantly 

different from what the algorithm determines had much less consistent ECoG features 

and more difficult-to-define SD waveforms. The discrepancy could be caused by the time 

difference between the time of recording and the time taken until postmortem when the 

tissue was analyzed.  

In addition to a complete immunohistochemistry, we are currently working on 

perfecting the detecting algorithm which would allow us to study more data sets. 

Currently we are relying on data sets with marked data as ground truth to where these SD 
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events occur start and stop and what should be discounted as noise. Once we have the 

necessary data and algorithm we expect to create a more detailed history, a form of time 

line depicting what the algorithm determines is happening to tissue health over time 

across files within data sets. 

 

 

Figure 4.16: The immunohistochemistry results rat 9 with rat nine file 5 overlayed to show the 

results of the clustering algorithm. Even though there are contiguous regions that suggest 

successful tissue health classification these staining results are the only form of 

immunohistochemistry we have to the accuracy of our model can be debated. 
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Figure 4.17: The immunohistochemistry results rat 16 with rat 16 file 2 - 1 overlayed to show the 

results of the clustering algorithm. 

 

 

Figure 4.18: The immunohistochemistry results rat 17 with rat 17 file 3 overlayed to show the 

results of the clustering algorithm. 

 

 

Figure 4.19: The immunohistochemistry results rat 18 with rat 18 file 3 overlayed to show the 

results of the clustering algorithm. 
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CHAPTER 5 

 

Future Direction 

 

While much research over the past decades has been devoted to the pathogenesis 

of stroke and acute care to increase the probability of survival, we now have the 

technology to monitor the electrophysiological changes that occur across the brain over 

time and use the new understanding we have gained to target the appropriate areas of the 

brain with the most likelihood for reversal of ischemic injury and closed-loop control of 

novel stroke treatment such as neural stimulation.  The analysis we conducted in this 

thesis work using data acquired from chronic micro-recording technology serves as a 

pioneering contribution toward development of such closed-loop stroke therapy.  

Dr. Jonathan Viventi and his research team at Duke University sought to develop 

a state of the art custom electrode array. Its small size means it can be implanted onto the 

patient’s brain surface with less invasive surgery, while its high electrode density allows 

it to record high resolution surface brain ECoG electrical activity. Dr. Ulrike Hoffman 

and her research team then used these electrode arrays to record ECoG data of alive 

unanesthetized rats while suffering from an induced stroke. They team at Duke allowed 

us access to the raw ECoG data with the goal of developing an algorithm capable of 

analyzing key features in the ECoG data and ultimately diagnose the state of tissue health 

in real time. The results of this study shows promise unfortunately, we were unable to 

perfect the detection algorithm and are missing key components of the subjects’ 

immunohistochemistry to completely validate our model. 
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Adjusting the detection algorithm should take priority in the terms of short term 

future direction. Once the detection algorithm is perfected more sets of data are available 

to be used in feature analysis algorithm. Perfecting the detection algorithm includes 

establishing a clear definition of when the start and end times of these SD events are. 

Additionally, we know silencing is a major factor in long term brain damage that has yet 

to be explored in this study. Silencing might prove to be a challenge to detect, since 

unlike depolarization that are induced by SDs, silencing can occur in ECoG brain activity 

without the need for an SD event to precede it. Ideally with these newly derived features 

our model should be able to more accurately predict tissue health, as well be able to 

analyze data sets that are not currently a viable option. Running the clustering algorithm 

with this new data we should be able to see the progression of tissue health in the 

recorded brain tissue. 

In the long term we hope our research leads to a more customized patient-specific 

treatment through the use of in vivo tissue health diagnosis. Furthermore, the use of 

ECoG data from the newly developed epidural electrode arrays will reduce the use of 

invasive surgery to monitor brain tissue health in vivo. Closed-loop treatment therapies 

can be developed without the need for highly invasive surgery and minimize the brain 

damage and associated morbidity otherwise resulting from stroke.   
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APPENDIX 

 
MATLAB Script Files  

 

A.1 Main 

 

close all 

clc 

clear 

 

load('C:\Users\axelo\OneDrive\Desktop\SD Project\Raw Data\Rat 

17_10012019_Original\Rat 18_10092019_003_Original.mat'); 

 

LUT = [61  7 36  6 35  3  1 62 ...  %LUT refrences where specific 

channels 

      39 10 40  9 38  4 31  2 ...  %are in space on the electrode 

array 

      12 42 13 41 11 34 33 32 ... 

      44 15 45 14 43  8 37  5 ... 

      59 30 60 29 58 24 52 49 ... 

      27 57 28 56 26 20 19 18 ... 

      54 25 55 63 53 48 17 46 ... 

      23 51 22 50 21 47 16 64]; 

lutmx = reshape(LUT,8,8)            %reshap LUT into 8x8 matrix 
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data(:,1)=[]; 

t = (0:length(data)-1)/Fs; 

 

figure(100) 

subplot(1,2,1) 

plot(t,data); 

title('Raw Data','FontSize',16); 

 

%% Remove DC 

iCh = 1:60; 

NormData = remove_DC(iCh, data, Fs); 

figure(99); 

 

%% 8x8 Array xcorr 

ref_ch = 26; 

center = 0; 

step = 20000; 

RxyAmpLag = corrplots(ref_ch, NormData, lutmx, center, step); 

figure(98); 

 

%% Create Heatmaps 

%if you want individual figures for each heatmap set figs to 1 
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figs=0; 

%how many heat maps total do you want 

numheat=9; 

%number of points to consider for the high clusters 

numpoints=8; 

[RxyAmpConv] = corrheatmap(ref_ch, RxyAmpLag, ... 

    center, step, figs, numheat, numpoints); 

figure(97) 

 

%% Moving Average 

%if you want so see data channels set figs to 1 

Sel_Chan = 1:60; 

figs = 0; 

[Weights, xTimes, yTimes] = Moving_Average(Sel_Chan, Fs, t, figs, 

data); 

 

%% Calculate Overall Trendline 

split_data=0.40; 

[a, N]=size(data); 

trainset=round(N*split_data); 

testset=N-trainset; 

 

X=[]; 
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W=[]; 

Z=[]; 

MSE=[]; 

 

time = 1:N; 

first_data=data(:,1:trainset); 

f_t=1:trainset; 

second_data=data(:,(trainset+1):N); 

s_t=(trainset+1):N; 

 

for idx = 1:60 

%     figure 

%     plot(data(idx,:)); 

 

    x = polyfit(time,data(idx,:),1);  

    X = [X; x];                         % Weights will be used as 

input parametes for the K-Means clustering 

    adj_data = [time; ones(1, N)]; 

    yhat = x*adj_data; 

%     hold on 

%     plot(time,yhat,'linewidth',2); 

     

    w = polyfit(f_t,first_data(idx,:),1);  
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    W = [W; w];                         % Weights will be used as 

input parametes for the K-Means clustering 

    adj_data = [f_t; ones(1, trainset)]; 

    yhat = w*adj_data; 

%     hold on 

%     plot(f_t,yhat,'linewidth',2); 

     

    z = polyfit(s_t,second_data(idx,:),1); 

    Z = [Z; z];                         % Weights will be used as 

input parametes for the K-Means clustering 

    adj_data = [s_t; ones(1,length(s_t))]; 

    yhat = z*adj_data; 

%     hold on 

%     plot(s_t,yhat,'linewidth',2);   

%     legend('Raw Data', ['Slope ' num2str(w(2))], ['Slope ' 

num2str(z)]); 

end 

 

%% Input Andrea's Data 

Andreadata = [xTimes yTimes]; 

PCA_Data = [X(:,1) W(:,1) Z(:,1) X(:,2) W(:,2) Z(:,2)]'; 

idx=1; 

for channel=1:60 
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    first_event = find(yTimes==channel)+1; 

    last_event = find(yTimes==channel+1)-1; 

    events=last_event-first_event; 

    last1=7+events; 

    first1=last1+1; 

    last2=first1+events; 

    PCA_Data(7:last1,idx)=Andreadata(first_event:last_event,1);   

%Add duration of SDs 

    

PCA_Data(first1:last2,idx)=Andreadata(first_event:last_event,2);  

%Add amplitude of SDs 

    idx=idx+1; 

end 

 

%% Run Clustering Given the Used Parameters 

figure; 

[coeff, score, latent, tsquared] = pca(PCA_Data'); 

plot(score(:,1), score(:,2), 'c.'); hold on; 

Distor_Meas = []; 

for nclust = 3 

    Distortion = []; 

    [IDX, C] = kmeans(PCA_Data', nclust, 'Replicates', 10); 
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    Dist = []; 

    M = []; 

    Index = []; 

    figure; 

    pt_markers = ['rx'; 'bx'; 'kx'; 'gx'; 'mx'; 'bo'; 'ko'; 'g.'; 

'r.'; 'b.'; 'k.'; 'g.';]; 

     

    for iclust = 1:nclust 

        hold on; 

        plot(score(find(IDX==iclust), 1), 

score(find(IDX==iclust), 2), pt_markers(iclust,:), 'LineWidth', 

1); 

        title([num2str(nclust) ' Clusters Used']); 

        curr_score_1 = score(find(IDX==iclust), 1); 

        curr_score_2 = score(find(IDX==iclust), 2); 

        Index = [Index length(curr_score_1)]; 

        n = size(score, 1) 

        d = (sum((score - C(iclust, :)).^2, 2)) 

        Distortion = [Distortion mean(d)]     

    end 

    %Calculate average distances and take the lowest, this is the 

"center point" 

     Distortion = mean(Distortion) 
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     Distor_Meas = [Distor_Meas Distortion]; 

    %Overall distortion measure is the average of the cluster's 

"packing" 

    Distor_Meas = [Distor_Meas mean(Distortion)]; 

 

%% Plot Clustering Results 

adj_LUT = LUT; 

 

figure(100) 

% subplot(1,2,1); 

% plot(data); 

% title('Raw Data'); 

hold on 

subplot(1,2,2); 

title('Clustered Data','Fontsize', 16); 

 

Clust_1 = W(find(IDX==1),:); 

[a, b] = size(Clust_1) 

for adx = 1:a 

    ich = find(W == Clust_1(adx)); 

    hold on; 

    plot(data(ich,:),'b'); 

    idx = find(LUT == ich); 
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    adj_LUT(idx) = 1; 

end 

%title('IDX = 1'); 

 

%figure 

Clust_2 = W(find(IDX==2),:); 

[a, b] = size(Clust_2) 

for adx = 1:a; 

    ich = find(W == Clust_2(adx)); 

    hold on; 

    plot(data(ich,:),'r'); 

    idx = find(LUT == ich); 

    adj_LUT(idx) = 2; 

end 

% title('IDX = 2'); 

 

%figure 

Clust_3 = W(find(IDX==3),:); 

[a, b] = size(Clust_3) 

for adx = 1:a; 

    ich = find(W == Clust_3(adx)); 

    hold on; 

    plot(data(ich,:),'k'); 
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    idx = find(LUT == ich); 

    adj_LUT(idx) = 3; 

end 

%title('IDX = 3'); 

 

for i=61:64 

    idx = find(LUT == i); 

    adj_LUT(idx) = NaN; 

end 

 

adjLUT_nonan = adj_LUT; 

adjLUT_nonan(find(isnan(adj_LUT))) = 0; 

PCA_img = reshape(adjLUT_nonan, 8, 8); 

%PCA_img = reshape(adj_LUT, 8, 8); 

hfig = figure; 

imagesc(PCA_img) 

cmap = [1 1 1; 0 0 1; 1 0 0; 0 0 0]; 

colormap(hfig, cmap); 

colorbar 

end 

 

figure 

plot(Distor_Meas) 
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xlabel('Number of Considerd Clusters'); 

ylabel('Obsered Distortion Measure'); 

 

A.2 Remove Data DC Component 

function NormData = remove_DC(iCh, data, Fs) 

 

t = (0:length(data)-1)/Fs; 

 

dataSel = data(iCh, :); 

M = mean(dataSel, 2); 

NormData = dataSel - repmat(M, 1, size(dataSel, 2)); 

figure(99);  

plot(t, NormData); 

title('Normalized Raw Data'); 

 

A.3 Derive Cross Correlation and Plot 

function RxyAmpLag = corrplots(desch, data, lutmx, center, step) 

 

figure(98); 

z = 0; 

mxdim = 8; 

 

RxyAmpLag = zeros(15,64); 
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for i = 1:mxdim 

    for j = 1:mxdim 

        z=z+1; 

        subplot(mxdim,mxdim,z); 

        lutmxch = lutmx(i,j); 

        if ((lutmxch <= 60)) 

            [Rxy, lags] = xcorr(data((desch),:), 

data((lutmxch),:), 'coeff'); 

            plot(lags, Rxy); 

            title(['ch ' num2str(desch) ' and ch '  

num2str(lutmxch)]); 

             

           for a=1:15 

               RxyAmpLag(a,z) = Rxy(lags == (a-5)*step + center); 

           end 

 else 

            plot(0, 0); 

            title('DNE'); 

        

        end 

    end 

end 
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A.4 Plot Cross Correlation Results as Heatmaps 

function [RxyAmpConv] = corrheatmap(desch, RxyAmpLag, ... 

    center, step, figs, numheat, numpoints) 

 

MaxX=zeros(numheat,numpoints); 

MaxY=zeros(numheat,numpoints); 

 

for a=1:numheat 

    for idx=1:64 

        if RxyAmpLag(a,idx) == 0 

            RxyAmpLag(a,idx) = 0; 

        end          

    end  

end 

figure(97); 

 

for a=1:numheat  

    %figure 

    RxyAmp = reshape(RxyAmpLag(a,:),8,8); 

    %RxyAmp = RxyAmp.'; 

    RxyAmpConv(:,:,a) = RxyAmp; 
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    subplot(3,3,a) 

    imagesc(RxyAmp); 

    colormap(parula(100));  

    colorbar; 

    title(['Lag: ' num2str((a-5)*step + center)]); 

end 

 

A.5 Derive Key Features Using Moving Average 

function [Weights, xTimes, yTimes] = Moving_Average(Sel_Chan, Fs, 

t, figs, data) 

 

Weights=[]; 

t = t/60; 

 

EventTime = xlsread('C:\Users\axelo\OneDrive\Desktop\SD 

Project\Raw Data\Rat 

18_10092019_Original\eventMinMaxRat18_003.xlsx','I:I'); 

xTimes = round(abs(EventTime)); %Idealize data ask Andrea to set 

in samples, and negative times? 

LongestSD = max(EventTime); 

Buffer = round(LongestSD*0.70); 

 



 

 68 

TimeStamps = xlsread('C:\Users\axelo\OneDrive\Desktop\SD 

Project\Raw Data\Rat 

18_10092019_Original\eventMinMaxRat18_003.xlsx','J:J'); 

TimeStamps = round(abs(TimeStamps)); %Idealize data ask Andrea to 

set in samples, and negative times? 

 

yTimes = xlsread('C:\Users\axelo\OneDrive\Desktop\SD Project\Raw 

Data\Rat 18_10092019_Original\eventMinMaxRat18_003.xlsx','K:K'); 

 

for channel = Sel_Chan 

    Weights=[Weights; channel, channel]; 

    sel_data = data(channel,:); 

    window = ones(1,15000)/15000; 

    mov_avg = conv(sel_data, window, 'same'); 

 

    if figs == 1 

        figure(channel) 

        plot(t, data(channel,:), 'linewidth', 1); 

        hold on; 

        plot(t, mov_avg,'k', 'linewidth', 2); 

    end 

 

    first_event = find(TimeStamps==channel)+1; 
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    last_event = find(TimeStamps==channel+1)-1; 

     

    for event = first_event:last_event 

        if (TimeStamps(event)-Buffer)>0 

            StartMarker = TimeStamps(event)-Buffer; 

        else 

            StartMarker = 1; 

        end 

        EndMarker = TimeStamps(event)+Buffer; 

        Test_Data = mov_avg(1,StartMarker:EndMarker); 

        TimeVec = StartMarker:EndMarker; 

        w = polyfit(TimeVec,Test_Data,1); 

        Weights=[Weights; w]; 

        adj_data = [TimeVec; ones(1, (EndMarker-StartMarker+1))]; 

        yhat = w*adj_data; 

 

        if figs == 1 

            %xline(TimeStamps(event),'k','linewidth',2); 

            xline(StartMarker/(Fs*60),'g','linewidth',1); 

            xline(EndMarker/(Fs*60),'r','linewidth',1); 

            %plot(TimeVec/(Fs*60), Test_Data); 

            plot(TimeVec/(Fs*60),yhat,'m','linewidth',2); 

        end 
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    end 

end 

 

 

 


