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ABSTRACT 

Proper Orthogonal Decomposition Analysis on Cycle-to-cycle Variability of High-

pressure Gasoline Sprays for Internal Combustion Engines 

By 

Blakeley Ficenec Williams 

Data analytics has grown in recent years and a commonly used technique is called 

model reduction, which helps reduce high-dimensional dynamics into low dimensions. 

Model order reduction is a general category of techniques, which include proper orthogonal 

decomposition or POD. Generally, POD decomposes a physical field like turbulent fluid 

flows or vibrations from structures and extracts “mode shapes” or basis functions from 

experimental data to yield low-dimensional dynamic models [1]. The basis functions 

represent the dominant or coherent structures from a given scalar fields set [2]. POD 

methods like balanced truncation, minimize the difference between the basis function and 

the data set, however, it is not as sensitive to detail like POD and becomes computationally 

intractable for very large dimensions (> 10,000 states) [3]. 

This research consisted of applying the snapshot POD method on fuel injector spray 

data, characterizing coherent structures, and quantifying the variability exhibited in the 

spray images between operating conditions. This POD method was chosen because of its 

ability to handle images and the capacity to eliminate statistical noise from the data. The 

data consists of high-pressure gasoline sprays injected inside a constant volume chamber 

at various operating conditions, i.e., injection pressures of 300 – 1500 bar and chamber 

pressures of 1 – 20 bar. Results contain information on cycle-to-cycle variability between 
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injection events. The cycle-to-cycle variability allowed for quantitative differences in the 

spray patterns and intensity in the variations. 
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CHAPTER 1 

Introduction 

Background 

The field of data analysis has grown significantly in the past several years with 

advancements in new technologies and increased data generation. Facial recognition in cell 

phones, autonomous/assisted driving, chatGPT, neural networks are examples of data 

driven tools [4]. While these technologies generate/use large datasets, there remains a 

challenge to increase interpretability while preserving the most amount of information. 

Principal component analysis (PCA) is a widely used statistical tool for dimensionality 

reduction while also facilitating visualization of multidimensional data. PCA remains the 

most well-known, but there are similar methods such as proper orthogonal decomposition 

(POD), factor analysis, and singular value decomposition (SVD) that were introduced in 

different fields by different people, all with an intent of dimensionality reduction. POD was 

first developed by Lumley in 1967 and was applied to turbulent flows to analyze coherent 

structures [5]. Since its first use, POD has been applied to a wide range of fluid flows 

including in-cylinder engine flows [5] [6], cycle-to-cycle variability (CCV) [2] [7] and 

turbulent gaseous and liquid jets [8]  [9]. The POD method provides a generic, analytic tool 

that can be used efficiently [10]. In this method there exists an optimal basis in which a 

given system can be written so that in this basis, all redundancies have been removed, and 

the largest variances of measurements are ordered and written in terms of its principal 

components [10]. Like POD, SVD can also be used as a method for data reduction. SVD 

is a method for identifying and ordering dimensions along which data points exhibit the 

most variation [11]. Once identification is made on where the most variation is, it is then 
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possible to find the best approximation of the original data points using fewer dimensions 

[11]. Ultimately, SVD takes a high dimensional, highly variable set of data points and 

reduces it to a lower dimensional space that exposes the substructure of the original data 

more clearly and orders it from most variation to the least [11]. 

Varying applications have required various developments of POD throughout the 

years. Some of the most common are balanced truncation, balanced POD, and snapshot 

POD. Each method provides slight advantages over others and will be briefly described 

here. Balanced truncation was first introduced by Moore for control theory of stable, linear 

input-output systems [12].  This method is notable for minimal error bounds compared 

with other reduced order models including PCA [3]. Additionally, balanced truncation has 

been applied to nonlinear fluid systems. However, such flows become computationally 

intractable given the large number of dimensions (>10,000 states) [3]. Primarily, the 

technique is unsuitable for turbulent flows, but works well in balanced linear systems, since 

these systems allow for the number of equations and variables to balance and create an 

algebraic solution. Balanced POD combines the attractive qualities of POD and balanced 

truncation. It obtains an approximation to balanced truncation by minimizing the error 

bounds to the lowest error possible from any reduced-order model, which is 

computationally tractable for large systems [3]. POD computes a set of linearly 

independent basis vectors indirectly allowing for large datasets [3]. The major limitation 

of balanced POD is applicability for stable and linear systems.  Several studies highlight 

this method including Moore and Lall et al. [12] [13]. Lastly, snapshot POD 

advantageously computes the set of linearly independent basis vectors directly using 

singular value decomposition (SVD) of an 𝑛 𝑥 𝑛 data matrix [3]. Similarly, a direct solution 
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can be computed from the eigenvalue problem if the systems contain less than 106 

dimensions [3]. This method also separates time away from the data allowing for more 

simplicity of the snapshot POD and making it an attractive technique for turbulent flow 

problems. 

Visual Comparison of POD Methods 

The three POD methods described above have been analyzed and compared by 

Rowley et al. [3]. The POD modes are calculated to be the eigenvectors and the columns 

of the 𝑛 𝑥 𝑚 matrix. This is done for each method that was discussed in section 1.1 above. 

Balanced truncation is able to provide better reduced-order models whereas balanced POD 

is a more tractable method for computing approximate balanced truncations, and snapshot 

POD decomposes a data set into a linear combination of orthonormal basis with 

corresponding coefficients. A visual representation of the first three modes for each method 

is shared below in Figures 1.1 – 1.3 [3]. The analysis was applied using balanced 

truncation, balanced POD, and snapshot POD (called POD). All three figures represent a 

fluid flow example where the flow runs parallel within a plane channel. 
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Figure 1.1 – Mode 1 for POD Methods [3] 

 

Figure 1.2 – Mode 2 for POD Methods [3] 
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Figure 1.3 – Mode 3 for POD Methods [3] 

The analysis decomposes the data in order of strength such that mode 1 contains 

the strongest features shared in each velocity and vorticity field. Such is the case in Figure 

1.1, the velocity field is highest in the first mode and begins to decrease in the second and 

third modes. The vorticity is interpreted the same as the velocity, where it is the highest in 

the first mode for each method. By mode 3, the vorticity has split as the rotations in the 

channel flow have decreased. In Chapter 2 and 3, similar findings are shown with the spray 

images that are being analyzed under this research and conclusions are made about the first 

mode describing the highest spatial differences between the spray cycles. 

Under the snapshot POD method, the modes look relatively the same for the general 

structure, especially for the first mode, but there are great differences for the second and 

third modes [3].  

The comparison of these figures helps to confirm findings from other researchers 

where the first mode provides the most dominant pattern in the data set, the second mode 

represents the secondary dominant pattern in the data, and so on [6]. 
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Snapshot POD 

The foundational concept of POD is to decompose a data set into a linear 

combination of orthonormal basis with corresponding coefficients. For a 2-D data set, the 

basis functions are representative unit vectors that minimize the Euclidean error, distance 

between two points, and the coefficients are scalar transformations. These basis functions 

are often called “modes” and they contain dominant features or representative trends within 

the data.  For liquid jets, this may be vortex structures, cycle-to-cycle variability, cavitating 

flows, or other flow patterns [14]. Specifically, the snapshot POD method has been 

commonly applied to discretized data that is repeatable and develops temporally and 

spatially. The snapshot POD was originally introduced by Sirovich in the 1980’s [15]. In 

the context of this thesis, the data set is the temporal and spatial development of a liquid 

spray for various operating conditions (i.e., injection pressure and chamber pressures).  

The mathematical representation of snapshot POD is as follows. For an experiment 

imaged K times, each image is a scalar field represented by  𝑆(). The image S is a matrix 

of size 𝐼 𝑥 𝐽 pixels. The entire data set is represented as a matrix of size 𝐼 𝑥 𝐽 𝑥 𝐾. The POD 

decomposes the input data set into a linear combination of 𝐾 spatial basis functions, 𝜙,  

and their corresponding coefficients 𝑐
(): 

𝑆() =   𝑐
()

𝜙



ୀଵ

 

( 1.1 ) 

 The POD “modes” or spatial basis functions describe the coherent structures of the 

data set 𝑆() and the coefficients represents the strength or dominance of what the ith mode 

has for the kth snapshot [7]. In vector notation, the modes are the vectors, and the 
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coefficients are the amplitudes to recover the kth image. The decomposition presents the 

coefficients and modes in decreasing order, such that the first mode describes the strongest 

features shared in all images, S, followed by the second mode which represents the second 

most dominant features and so on, with the kth mode capturing statistical noise. Under 

certain applications, the first mode describes the average behavior of the entire data set, 

𝑆(), while the second mode represents the most shared dominant features, i.e., a vortex 

structure, directionality, distance, or variability.  

 The snapshot POD can be calculated with different approaches. Weiss [5] provides 

a detailed description of POD and discusses three algorithms for calculating the 

decomposition of a turbulent separation-bubble flow. The study does not provide visual 

comparisons between methods, but instead refers to the data in abstract form. In fact, many 

studies use slightly different methods with limited comparisons [6] [2] [1]. Given the 

numerous POD and PCA techniques mentioned, there is a need to understand the 

fundamental differences between techniques. Thus, metrics for comparison must first be 

discussed.  

The results of the decomposition have been commonly interpreted using similar 

metrics even when different methods are applied. These include the energy fraction, the 

modes, and their coefficients. The energy fraction explains the energy distribution between 

the modes. With repeatable data, the vectors of the images form a cluster and point in the 

same direction, concentrating most of the energy in the first few modes. On the other hand, 

large variation within a data set will translate into a larger length of space. More energy 

will be distributed throughout the modes.  
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The modes that are observed in the images of the sprays are compared for each 

mode. The modes are a measure of how the velocity is correlated at different points in the 

flow [5]. A zone of correlation can represent a coherent structure when the corresponding 

energy is dominant compared to the other modes [5]. There are many POD modes that add 

up to complete the flow when multiplied by their time coefficients and some of these zones 

of correlation appear randomly often due to the turbulent nature of most practical flows, 

meaning that these modes are a manifestation of the randomness of turbulence [5]. 

Motivation, Research Objectives, and Thesis Contents 

Free shear flows serve as a great canvas to study turbulent structures, cycle-to-cycle 

variability, cavitation-induced variability and forced variability induced by experimental 

conditions. Additionally, the results of a POD analysis can inform turbulence models to 

improve modeling and prediction. Liquid jets are a free shear flow where atomization and 

entrainment are important physical processes that govern a wide range of applications 

including power generation, emissions control, agriculture, and manufacturing. Fuel 

injection for internal combustion engines serve a crucial role in performance and emissions 

and are subjugated to the physics mentioned above.  

The objective of the present work is to contribute to the existing research on POD 

by taking data in the form of raw spray images from a high-pressure liquid fuel spray for 

an internal combustion engine and characterize the coherent structures and quantify the 

variability. The data is in the form of high-speed images (> 50,000 fps) recorded using 

diffuse back-lit shadowgraph in a constant volume chamber (CVC). The idea is to research 

and evaluate different approaches to snapshot POD and find ways to compare them 

quantitatively. These approaches are the eigenvalue problem, SVD with a correlation 
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matrix, and SVD using the economy size decomposition. Variability is studied between 

repetitions of the same condition i.e., cycle-to-cycle variability, and among different 

operating conditions i.e., injection pressure and chamber pressure. The present work 

focuses on a POD analysis for experimental data that was previously collected. The full 

details of the experimental matrix are provided in Medina et al. [16] [17] and briefly 

summarized in the next section.  

Chapter 2 presents the technical approach of the POD analysis. Firstly, the 

fundamental linear algebra is discussed in the context of images. From constructing the 

data matrix to defining the decomposition and its outcomes. Also introduced is a qualitative 

analysis of the “modes”.  Given the vast applicability and numerous techniques, discussing 

the differences between a handful of POD techniques was necessary. Specifically, the 

“snapshot” method is solved using three techniques:  using the eigenvalue problem, using 

SVD with a correlation matrix, and using SVD with an economy-size decomposition. The 

results are presented as energy fractions and are the primary metrics for comparison for 

each technique.  

Chapter 3 presents the results of the snapshot POD technique solved by using SVD 

with an economy-size decomposition applied to the entire experimental matrix discussed 

in section 1.5. A qualitative analysis is discussed for POD modes to identify coherent 

structures and cycle-to-cycle variability for the extreme conditions in the experimental 

matrix. A quantitative analysis is presented to identify mechanisms of cycle-to-cycle 

variability and forced variability induced by experimental conditions. Energy fractions and 

qualitative analyzations of the modes are compared for experimental conditions.  



 
 

 10

The final chapter summarizes the key conclusions of each chapter and provides 

recommendations for future work.  

Fuel Injectors and Experimental Setup 

 
Portions of the following section appear in the technical papers written by Dr. 

Medina and referenced under [16] [17].  

Fuel injectors are the devices that are used to force and atomize fuel straight into 

internal combustion engines. The experiment that gathered the raw data utilized three 

different fuel injectors. Injector 1 is a single hole injector and injectors 2 and 3 are both 

double hole injectors. A summary of the experimental conditions is shown in Table 1.1. 

The spray development was examined by diffusing backlit shadowgraph imaging and the 

setup consisted of a constant volume chamber with an internal spherical diameter of 12.4 

cm. The chamber used for this experiment was equipped with three optical access ports, of 

which only two were utilized, and others for instrumentation and measurement. The optical 

access ports that were used are those perpendicular to the axis of the injector, each having 

a viewing diameter of 7.6cm. One of the ports was to allow for the diffusion of light to 

illuminate the chamber and the other was used for imaging. 

The chamber had a maximum chamber pressure of 100 bar and was pressurized with 

the use of an ultra-high purity grade nitrogen, PurityPlus Gases with a purity rating of 

99.999%. The Supco-DPG1000 pressure gauge was used to observe the chamber pressure 

and a K-type thermocouple was used to monitor the chamber temperature. The range of 

chamber pressures used in the study was 1 to 20 bar with a repeatability of ± 0.2 bar at a 

temperature of 298 K. 
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Table 1.1 – Experimental Conditions 

Chamber gas Nitrogen 

Fuel type Reference grade gasoline 
Injector 1 type Single hole, centered 
Injector 2 type Double hole 
Injector 3 type Double hole 
Injector 1 hole size (µm) 110 
Injector 2 hole size 1 & 2 (µm) 109.8; 190 
Injector 3 hole size 1 & 2 (µm) 149.9; 149.9 
Injection duration (ms) 1 
Injection pressure (bar) 300, 600, 900, 1200, 1500 
Chamber temperature (K) 298 
Chamber pressure (bar) 
(chamber density (kg/m3) at 
298K) 

1 (1.133), 5 (5.65), 10 
(11.33), 20 (22.66) 

 

The Vision Research Phantom v7.11 12-bit CMOS array was the high-speed camera 

used to capture the injection events under this experiment. Over the course of the 

experiment, there were two data sets recorded: near-nozzle images and bulk spray images. 

Those used under this research are the sets of bulk spray images. The camera settings are 

all listed in Table 1.2. The lenses that were utilized for both data sets were a Nikon Nikkor 

105 mm lens. 

Table 1.2 – Camera Conditions 

Setting Macro Spray Imaging 

Frame rate (fps) 69,000 

Exposure time (µm) 14 

Lens aperture (f/#) 5.6 
Camera resolution (pixel x 
pixel) 

608 x 152 

Image resolution (pixels/mm) 13.9 
 

The fuel type that was used for this experiment is a reference grade gasoline from Gage 

Products Co., product number 40665-55F, and the fuel properties are in Table 1.3. 
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Table 1.3 – Fuel Properties* 

Property Test Method Value 

Fuel Type - 
Reference grade gasoline, 
40665-55F 

Specific gravity 289 K ASTM D4052 0.743 
Reid vapor pressure (kPa) ASTM D5191 61.46 
Research octane number ASTM D2699 91.5 
Motor octane number ASTM D2700 83.4 
Heat of combustion (MJ/kg) ASTM D240 43.6 
H/C ratio (Mole basis) Gage-calculated 1.91 
Distillation, IBP (K) ASTM D86 305.2 
Distillation, 10% (K) ASTM D86 322.9 
Distillation, 50% (K) ASTM D86 372.4 
Distillation, 90% ASTM D86 428.2 

*As per manufacturer specifications. 

For the purposes of the experiment, the fuel was blended with 350 ppm by volume of 

lubricity additive (Infineum R655) to allow operation with the diesel pump and injection 

system. The fuel pressure range was 300 to 1500 bar. The injectors used for this experiment 

were prototype research-grade injectors developed by Bosch. The injector bodies were 

production diesel hardware, and the nozzles were custom designed with canonical internal 

architectures to study specific geometric features. Injector 1 has one hole centrally located 

with a converging nozzle and a high percentage of hydro-erosion rounding of the nozzle 

inlet. Hydro-erosion increases the statis flow rate by rounding the nozzle inlet edges. The 

percentage of hydro-erosion rounding reflects the percent increase in the static flow rate. 

Injector 2 and 3 both have two holes oriented on the same plane with 30° of separation and 

the holes are located 15° above and below the horizontal plane. Injector 2 had two nozzles 

with two different outlet diameters each with straight nozzle passages and no inlet 

rounding. Injector 3 had two nozzles, each with the same outlet diameter and each with 

hydro-erosion rounding of the nozzle inlet. However, one nozzle passageway was 

diverging and the other was converging. Nozzle passage conicity was measured relative to 

the nozzle exit diameter, where a straight or uniform passageway had a conicity of 0, a 
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converging nozzle had a positive conicity, and a diverging nozzle had a negative conicity. 

The injectors were all controlled electronically using a LabView based program with 1 ms 

injection events. Labview was also programmed to synchronize the injection events with 

the camera trigger. 

The experiment that gathered all the raw data that is used in this research was completed 

prior to the onset of the research and is not part of the analysis.  
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CHAPTER 2 

Specifics of the Math 

Methods and Equations 

In this section the fundamental elements of the snapshot POD are discussed. The 

decomposition was performed using the eigenvalue problem, SVD with a correlation 

matrix, and SVD with “economy-size” decomposition. The general structure is specified 

here and remains the same for all approaches.  The outcomes of each approach are 

described in their respective sections.  

Suppose a repeatable, discrete scalar field is represented as a matrix with size -

𝐼 𝑥 𝐽 𝑥 𝐾, where 𝐼 𝑥 𝐽  represent the scalar field and 𝐾  represents the number of repetitions. 

The data matrix can be restructured such that each field is stacked into one row (L) and the 

number of rows indicate the number of repetitions, K, as shown in Equation 2.1:  

𝑆 =  ൦

𝑆(ଵ)

𝑆(ଶ)

:
𝑆()

൪ =  

⎣
⎢
⎢
⎢
⎡𝑠ୀଵ,ୀଵ

(ଵ)
𝑠ୀଵ,ୀଶ

(ଵ)
… 𝑠ୀଵ,ୀ

(ଵ)
𝑠ୀଶ,ୀଵ

(ଵ)
… 𝑠ୀூ,ୀ

(ଵ)

𝑠ୀଵ,ୀଵ
(ଶ)

𝑠ୀଵ,ୀଶ
(ଶ)

… 𝑠ୀଵ,ୀ
(ଶ)

𝑠ୀଶ,ୀଵ
(ଶ)

… 𝑠ୀூ,ୀ
(ଶ)

… … … … … … …

𝑠ୀଵ,ୀଵ
()

𝑠ୀଵ,ୀଶ
()

… 𝑠ୀଵ,ୀ
()

𝑠ୀଶ,ୀଵ
()

… 𝑠ୀூ,ୀ
()

⎦
⎥
⎥
⎥
⎤

 

( 2.1 ) 

The data matrix 𝑆 is an 𝐿 𝑥 𝐾 matrix where 𝐿 = 𝐼 𝑥 𝐽. Velocity, temperature, and pressure 

fields are examples of such a scalar field. For images of turbulent flows, the light intensity 

captured by the camera sensor also serves as a discrete scalar field. These images can be 

decomposed into a linear combination as shown in Equation 2.2. 

𝑆 =   𝑐
()

𝜙



ୀଵ

 

( 2.2 ) 
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Where 𝑐
() are the coefficients that represent the strength features of what an ith basis has 

on the kth image and 𝜙 represents the spatial basis functions of size 𝐼 𝑥 𝐽. The basis 

functions are obtained by minimizing the Euclidean error following Equation 2.3 [3] [7]. 

 ะ 𝑆 −   𝐶
()

𝜑



ୀଵ

ะ

ଶ

ୀଵ

→ 𝑚𝑖𝑛 

( 2.3 ) 

Where || || denotes the 𝐿ଶ norm, and r < K for any subset of the 𝑆. The basis functions are 

normalized in the Euclidean space such that the sum of the squares of the vectors is unity. 

Each basis function is also orthogonal to all others, resulting in orthonormal basis 

functions. The basis functions contain “flow patterns” for every structure of every image, 

however the modes may not be physical coherent structures [18].  Since each structure is 

present in every basis function, the magnitude of the structure is represented by the 

coefficients. Suppose a repetition does not contain a structure present in the basis function, 

the coefficient that corresponds to that image will have a zero magnitude.  

 To determine the coefficients, the original matrix 𝑆 is projected onto the computed 

basis functions, 𝜙. Thus, each repetition can be reconstructed using Equation 2.2, summing 

all the modes with the respective coefficient for that repetition. The coefficients can also 

be used to understand how the energy is distributed between the modes. In other words, 

when most of the energy is concentrated in the first few modes, the repetitions can be 

considered consistent. The concept of “low-order modeling” arises from this result because 

only a few modes are necessary to capture a majority of the flow behavior. While more 

energy distributed throughout more modes signifies larger variation in the data. The energy 

fraction is calculated using Equation 2.4. It should be noted that the concept of energy does 
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not refer to a thermodynamic property when applied to a scalar field of light intensity, but 

rather “information” of the data set [1] [19]. 

𝐸𝑚 =  
1

2
ቀ𝑐𝑖

(𝑘)
ቁ

2
𝐾

𝑖=1

 

( 2.4 ) 

Eigenvalue Problem 

The standard algebraic eigenvalue problem finds the eigenvectors and eigenvalues 

that satisfies Equation 2.5, where the eigenvectors are a nonzero vector and 

𝐶𝑥 = 𝜆𝑥 
( 2.5 ) 

 

𝜆 represents the eigenvalues, x represents the eigenvectors, and C represents a 𝑛 𝑥 𝑛 matrix. 

To solve the eigenvalue problem for an 𝑛 𝑥 𝑚 image, such as the data matrix 𝑆, the matrix 

requires truncation or modification. A spatial correlation matrix can be constructed using 

𝑆 demonstrated by Equation 2.6. 

𝐶 =
1

𝑛 − 1
𝑆𝑆் . 

( 2.6 ) 

 
The correlation matrix is symmetric and thus restricts the eigenvectors from forming an 

orthonormal basis. Solving the eigenvalue problem results in ordered eigenvalues from 

largest to smallest and obtaining the eigenvectors requires a projection of the data matrix. 

Lastly, the spatial coefficients shown in Equation 2.2 are obtained by projecting the data 

matrix S onto the eigenvectors [5].  
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SVD with Correlation Matrix 

 A more direct method of solving for the basis functions and their respective 

coefficients results from computing the SVD of the data matrix S as shown in Figure 2.1 

below. 

         

Figure 2.1 – SVD Representation 

The decomposition results with orthonormal matrices, 𝑈 and 𝑉  and a diagonal matrix with 

decreasing and nonnegative diagonal entries, Σ. Conveniently, the columns of matrix 𝑈 are 

the POD modes while the coefficients are obtained by matrix multiplication of Σ and V. 

Secondly, the matrix, Σ, contains the singular values, 𝜎, of 𝑆 which are associated with the 

eigenvalues (𝜆 =  𝜎ଶ). The eigenvalues in this case have the same meaning as the 

eigenvalue problem in the previous section. It should be noted that the decomposition is 

suitable for square matrices with lower dimensions.  

SVD decomposes one complex transformation into simpler transformations of 

rotation and scaling. When focused on transformations, matrices 𝑈 and 𝑉′ cause the 

rotation and the diagonal matrix Σ causes the scaling. This ultimately allows for the original 

matrix to be displayed as a linear combination of low-rank matrices. 

𝑆௫ 

= 

𝑈௫ 𝛴௫ 

𝑉′௫ 
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Economy-size SVD without Correlation Matrix 

 Economy-size decomposition is computed using the SVD, but requires truncation 

when using a rectangular matrix, such as matrix 𝑆.  Assuming 𝑆 is an 𝐿 𝑥 𝐾 matrix such 

that 𝐿 > 𝐾, only the first 𝐾 eigenvectors are computed using this method.  

Since this approach does not require that 𝐿 = 𝐾, such as the correlation matrix C necessary 

in the previous approaches, the SVD does not require the data to be centered by the mean, 

normalized, or standardized resulting in a faster execution. The SVD approaches are more 

direct compared with the eigenvalue approach [5]. However, economy size SVD does not 

require additional processing. The advantage of the economy-size decomposition removes 

extra rows/columns of zeros from the diagonal matrix of singular values, Σ. A similar 

procedure is followed as described in the previous section.  

 
Examples 

 The three approaches that are described in the previous section have each been 

compared and evaluated under a single condition. The selected condition is an injection 

pressure of 600 bar and a chamber pressure of 20 bar (600 & 20). Each method uses the 

same set of images with the same start of injection (SOI). A montage evolution of the raw 

spray images is shown in Figure 2.2 below to help describe the progress in the x-direction 

as a function of time. The first image is the SOI followed by six other images varying with 

after start of injection (ASOI) time. 
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Figure 2.2 – Temporal evolution of raw spray data for injection pressure of 600 bar and chamber pressure 

of 20 bar 

0ms SOI 

0.043ms ASOI 

0.087ms ASOI 
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0.42ms ASOI 
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To understand the key differences across each approach of the snapshot method, POD 

needs to be related to the raw sets of spray-imaging data. The development begins with the 

use of a matrix as described in the previous section of the first frame ASOI of each set of 

images, applying the POD to that matrix, calculating the energy fraction for each one of 

the POD modes, and then repeating the steps for the next frame ASOI.  

An example of a calculated energy fraction for the first 20 modes of time stamp 1, 2, and 

30 of the 600 & 20 condition is shown in Figure 2.3. This graph is one of the key 

comparisons that is used across each approach. To be able to show high variability amongst 

each mode, the ensemble mean is subtracted from the data set. When the ensemble mean 

is subtracted, the first mode does not represent the average, however, it represents the most 

statistically large spatial differences between the cycles.  

Figure 2.3 is from the eigenvalue problem approach describing the changes at each instant 

of time on how the energy is distributed. The changes depend on how steady or variable 

the spray distribution is at the time the snapshot is taken. In this approach, the ensemble 

mean was subtracted from the dataset, and so the first mode describes a higher energy 

fraction than the remaining modes, representing that the pattern of the spray is similar from 

one cycle to the next. Furthermore, this shows that there is a low amount of variability 

between each cycle and the first mode can capture majority of the ensemble behavior. If 

the first mode’s energy fraction were to be lower, this would tell that the differences in the 

sets of spray data are more complicated. 
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Figure 2.3 – Energy Fraction for Eigenvalue Problem 

The same energy fraction is taken for the next approach, SVD with the use of a correlation 

matrix and this graph is displayed in Figure 2.4.  

EF = 0.5279 
EF = 0.4669 
EF = 0.2355 
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Figure 2.4 – Energy Fraction for SVD with Correlation Matrix 

With this approach, this study found that the energy fraction of the first mode is also the 

highest for each time stamp. This approach also subtracts the ensemble mean from the data 

set, therefore, similarly telling that the first mode has a higher energy fraction than the 

remaining modes, indicating that the pattern of the spray is similar from one cycle to the 

next. Like the previous approach, the first mode has the highest energy fraction, which 

indicates that the pattern of the spray is consistent from one cycle to the next. Comparing 

the differences among these first two approaches it is noticed that each time stamp is 

different, especially the first and second. There is a significant drop for the third mode of 

time stamp one in Figure 2.4 compared to that of Figure 2.3. Time stamp one drops from 

an energy fraction of 0.8293 at mode one to an energy fraction of 0.0031 at mode three. In 

Figure 2.3 time stamp one drops from an energy fraction of 0.5279 at mode one to an 

EF = 0.8293 
EF = 0.7449 
EF = 0.5434 
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energy fraction of 0.0322 at mode three. SVD with the correlation matrix approach shows 

a similar trend as the eigenvalue problem, however, in magnitude the energy fractions are 

much larger by almost double. The third approach has an identical trend to the eigenvalue 

problem, therefore, also being a similar trend to the previously discussed approach. Figure 

2.5 shows the energy fraction graph for the third approach that was assessed under this 

research.  

 

Figure 2.5 – Energy Fraction for SVD with Economy-size Decomposition 

Even though this third approach and the second approach both utilize the MATLAB SVD 

function, the magnitudes are still double for the SVD with the correlation matrix approach. 

With this third approach the data is not centered by the mean, normalized, or standardized 

since the purpose of the SVD economy-size decomposition is to remove any extra rows or 

columns of zeros from the diagonal matrix of singular values, 𝑆. With the removal of these 

EF = 0.5279 
EF = 0.4669 
EF = 0.2355 
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zeros and columns, it can improve execution time and reduce storage requirements without 

comprising the accuracy of the decomposition. With the economy-size decomposition, it 

indicates that the magnitude in the energy fraction would not be present in the data like it 

is in the second approach. 

Regardless of the energy fraction for each mode, the sum of energy fractions for the first 

20 modes gives the value of 1, which confirms all data has been accounted for. 

 
Discussion 

 
 With all three approaches under this research, it is found that there is a small amount 

of variability between each cycle and the first mode captures majority of the ensemble 

behavior. Figure 2.6 below displays the first time stamp from the above energy fraction 

graphs from the first 20 modes for each approach onto a single graph. With this visual, of 

all three, the eigenvalue problem and SVD without the correlation matrix overlap each 

other as they are identical. The study also observes the key differences of the SVD with 

correlation matrix approach. The main difference is the magnitude. The energy fraction of 

the first mode has a difference of 0.3014. What is unusual is the intersection between mode 

one and two. The energy fraction is the same for all three approaches around the middle of 

mode one and two, and then leads to the SVD with correlation matrix approach having a 

lower energy fraction than the other two approaches. The difference at mode two is 0.072, 

whereas the rest of the modes are close to double in magnitude, however, still following 

the same trend. The difference with these modes is assumed to be due to the MATLAB 

SVD function not requiring the use of a correlation matrix as other researchers and 
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mathematicians have found that the correlation matrix is performed within the function and 

the data does not need to be centered by the mean, normalized, or standardized. 

 

Figure 2.6 – Combined Energy Fraction Graph 

Figure 2.6 also provides support on which approach should be used for the actual data 

analysis portion of this research. Ultimately, any approach could be used to analyze the 

variability amongst conditions, evaluate the quantitative differences in the spray patterns, 

and intensity in the variations. It is clear that the SVD is more economical when it comes 

to the number of lines within the code itself. The decision of which approach to use comes 

down to the dimensions of matrix 𝑆, depending on the size, solving the eigenvalue problem 

is often faster. This is caused by the SVD function still needing to compute the 𝑛 𝑥 𝑛 matrix 

𝑆′𝑆 to obtain its eigenvectors 𝑉 [5]. Therefore, for most applications in experimental or 

numerical fluid dynamics (where 𝑛 > 𝑚), solving the eigenvalue problem is the method of 
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choice [5]. With the snapshot POD method, being the method of choice for this research 

and having an end goal of solving an optimization problem that gives the best 

representation of data, the economy-size SVD without the correlation matrix is chosen. 

This approach can handle mega pixel images and is one of the most useful matrix 

decompositions. It can also be used as a basis for principal component analysis for taking 

high dimensional data and trying to understand it in terms of its dominant patterns or 

correlations. When researching this approach, it was initially found in use by Dr. Brunton, 

a Mechanical Engineering professor at the University of Washington. Dr. Brunton provides 

a big picture overview of SVD and the use of an economy-size SVD in his videos. He 

shares examples of physical systems of snapshots that evolve in time into a data matrix and 

further shares that SVD is numerically robust and an efficient method of extracting patterns 

from data.   

Another focus when studying the math under this research was the differences 

between 𝜆 (lambda) and Σ (sigma). Dr. Brunton describes the 𝑆 matrix as containing the 

singular values Σ (ordered by importance diagonally) and that Σ2 are the eigenvalues. 

Sirovich who developed the snapshot POD describes the eigenvalues as being 𝜆. Another 

researcher and professor, Weiss, also describes that the matrix 𝑆 is the singular values of 

matrix 𝑈 and the eigenvalues are Σ2. The last individual that discusses Σ and 𝜆 in his thesis 

is Luis G. Gutierrez Arsuaga who is another researcher that describes matrix 𝑆 containing 

the singular values of Σ and 𝜆 is Σ2. With analyzing the research of four others, allowed for 

further interpretation of the differences between 𝜆 and Σ. Each mention these symbols and 

what they represent slightly differently, however, it concludes the same meaning across 

each mention: 𝜆 are the eigenvalues, which are Σ2. 
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CHAPTER 3 

Data Analysis and Interpretation 

Cycle-to-cycle Variability 

 The behavior of the spray plays a role in how the cycle variability is controlled. To 

identify coherent structures and cycle-to-cycle variability for extreme conditions in this 

experimental matrix the POD modes are analyzed under seven different conditions. The 

conditions are the injection pressure and chamber pressure ranging from 600 bar to 1500 

bar and 1 bar to 20 bar, respectively. A quantitative analysis is performed to recognize 

processes of cycle-to-cycle variability and forced variability induced by experimental 

conditions.  

Injection Pressures of 600 bar 

The first set that has been analyzed are the conditions of injection pressure 600 bar 

and chamber pressures of 1 bar and 20 bar. The first figure, Figure 3.1, displays the energy 

fraction for each condition. In both conditions, mode 1 is where the spray pattern intensity 

is the highest. 600 bar and 20 bar has an intensity of 23.5%, whereas 600 bar and 1 bar is 

12.2%. 600 bar and 20 bar has a higher energy fraction for the first mode by 0.11, almost 

by half. This difference for the first mode could be linked to the higher chamber pressure 

of 20 bar rather than 1 bar. With increased chamber pressure, the spray area is expected to 

increase. What stands out among these two conditions is mode 3 where the energy fractions 

are nearly identical, which are then followed by lower energy fractions for the rest of the 

modes. 
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Figure 3.1 – Energy Fractions for Injection Pressures of 600 bar for Time Frame 30 

Viewing the third mode of 600 bar and 1 bar, it has a slightly higher intensity present than 

what are in the 600 bar and 20 bar condition. As was described in the previous chapter, the 

input spray images are equal to the POD modes and the input images can be reconstructed 

with a lower-order estimation. The first three modes provide the greatest possible three-

term approximation. Analyzing Figure 3.1 in conjunction with Figure 3.2, visually, it is 

evident that mode 1 has the highest energy fraction. The presence of the white color for the 

spray image shows the features that exist in the input image, those that are in black are the 

features that do not exist in the input image. Comparing mode 1 to modes 3 and 6, mode 1 

for both conditions displays a greater presence of white, indicating that this mode has more 

features like the input image. Another visual realization is that the spatial droplet dispersion 

is one of the main differences between these two conditions. For the 600 bar and 1 bar 

condition, the same time frame as 600 bar and 20 bar (frame 30), penetrates past the frame 
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of the image. The droplets of the spray are dispersed at a much farther range for 600 bar 

and 1 bar, as is expected with the lower chamber pressure.  

 

 

 

 

 

 

Figure 3.2 – Modes of 600 bar & 1 bar and 20 bar for Time Frame 30 

600 & 1 Mode 1 

600 & 20 Mode 1 

600 & 20 Mode 3 

600 & 20 Mode 6 

600 & 1 Mode 3 

600 & 1 Mode 6 
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With 600 bar and 20 bar, we see a small vortex has formed at the top of the spray area for 

mode 1. Since this vortex is displayed in white, it is also a present in the input images. For 

modes 3 and 6, there is a greater presence of black color and less features exhibited from 

the input images.  

Coefficients are generated by the projection of each mode onto each snapshot [2]. Figures 

3.3 and 3.4 include the coefficients of mode 1 for 20 spray images for the conditions being 

discussed, 600 bar and 1 bar and 600 bar and 20 bar. There is a fluctuation between positive 

and negative coefficients across the 20 spray images. In condition 600 bar and 1 bar, there 

are nine spray images that have negative coefficients, and the remaining are all positive 

indicating that more features from the original image are present.  

 

Figure 3.3 – Coefficients of Mode 1 for Condition 600 bar & 1 bar 

Figure 3.4, condition 600 bar and 20 bar, on the other hand, has eleven spray images with 

negative coefficients. The more negative coefficients denotes that there are more features 

that do not exist in the input image. It is difficult to tell which condition is more like the 
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input image with only the energy fraction data and visuals of the modes. With the analysis 

of the first mode’s coefficients for the spray images, it aids in discovering which condition 

exhibits more features from the input image. The mode 1 coefficients for these two 

conditions do not have a similar trend. With the first spray image, it is distinct that 600 bar 

and 1 bar has a positive coefficient of 532, whereas the 600 bar and 20 bar first spray image 

is a negative coefficient of 977, almost double of what 600 bar and 1 bar is, but in the 

opposite direction. 

Figure 3.4 – Coefficients of Mode 1 for Condition 600 bar & 20 bar 

The above analysis of the coefficients has only been performed for the conditions of 600 

bar and 1 bar and 600 bar and 20 bar. The rest of the CCV analysis focuses on the energy 

fractions and modes for the remaining five conditions.  

Chamber Pressures of 1 bar 

The three conditions that were analyzed next under Figure 3.5 are that of chamber pressure 

1 bar and injection pressures of 600 bar, 900 bar, and 1500 bar. The 1500 bar and 1 bar 
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condition has the highest energy fraction for the first mode of 21.8%, followed by 900 bar 

and 1 bar with 16.9%, and 600 bar and 1 bar with 12.2%. The higher the injection pressure, 

the higher the energy fraction these conditions have for the first mode. 

Figure 3.5 – Energy Fractions for Chamber Pressures of 1 bar for Time Frame 30 

High injection pressure results with proficient fuel atomization and mixing, which created 

a more homogeneous charge that mitigates the formation of particulates [19]. This is what 

is noticed in the high injection pressure of 1500 bar. The range and width of the particulates 

is larger than that of the two other conditions. In Figure 3.6, the difference in the 

disbursement of particulates for 600 bar and 1 bar and 1500 bar and 1 bar is more extreme 

towards the right of the image. 600 bar and 1 bar presents a thinner width of particulates at 

the end of the right side of the frame than 1500 bar and 1 bar.   
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Figure 3.6 – First Mode of 600 bar, 900 bar, and 1500 bar and 1 bar for Time Frame 30 

Like the images of the modes in Figure 3.2, Figure 3.6 also displays the white and black 

colors, indicating what features are present in the input images. Another observation that 

is made in the above figure is spray-induced turbulence. The fuel flow in the injector 

provides this spray turbulence, which helps the way the spray is distributed. High injection 

pressures that have high velocities produce more turbulence, which in return gives off an 

improved mixing between the fuel and air.  

Analyzing Figures 3.5 and 3.6 together, the results indicate that the first mode is higher for 

the highest injection pressure, indicating that the morphology of the spray is more 

consistent and lower CCV is related with higher injection pressures. As the injection 

pressure decreases, the energy of the first mode decreases as we can see in the 900 bar and 

600 bar condition in Figure 3.5, which here indicates that the differences in the spray 
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distribution from each cycle are starting to be much more complex and substantial, and 

therefore, will necessitate higher modes to determine the CCV. 

Injection Pressures of 1500 bar 

The last two conditions that were analyzed are 1500 bar and 1 bar and 1500 bar and 20 bar. 

From the previous analysis comparing 600 bar, 900 bar, and 1500 bar and 1 bar conditions, 

it is known that the high injection pressure is expected to have a higher energy fraction. 

Unlike the comparison between the two 600 bar conditions, here the two 1500 bar 

conditions have the same energy fraction for mode 1 of 21.8%. The first mode shows the 

most statistically significant spatial differences between the cycles, therefore the spatial 

differences are the same for this mode for both conditions. However, 1500 bar and 1 bar 

drops significantly for mode 2 to 8.9%, whereas, 1500 bar and 20 bar had a slight decrease 

to 16.2%. The differences in energy fractions for mode 2 is likely linked to the difference 

in chamber pressure. With the higher chamber pressure of 20 bar, it is revealed that any 

aerodynamic forces that are acting on the spray droplets decrease the spatial differences. 

With the lower chamber pressure of 1 bar, there is less prevention of droplet movement 

and therefore, an increased variability between modes 1 and 2. By mode 3, the energy 

fractions become more consistent between the two conditions in a decreasing pattern.  
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Figure 3.7 – Energy Fractions for Injection Pressures of 1500 bar for Time Frame 30 

Interpreting the results in Figure 3.7 and 3.8 together, mode 1 shows the highest intensity. 

There are a lot of white areas present in both modes for Figure 3.8, again indicating features 

that are present in the input images. With the low chamber pressure of 1 bar, the spray 

penetrates past the frame of the image, excluding the tip of the spray for the analysis. The 

primary break-up and secondary break-up of the chamber pressure of 1 bar is still present 

for analysis. There are some similarities that are seen between both conditions in the first 

and second break-up periods. There is a pattern between black and white regions at the top 

and bottom portions of the spray. Some features along this path are present in the input 

images and some are not. What is most notable between the first modes of these conditions 

is the two black areas at the top and bottom of condition 1500 bar and 1 bar and not present 

in the 1500 bar and 20 bar condition. These are circled in red on the figure. The lower 

chamber pressure played a role on how quickly the spray was able to penetrate, leaving the 
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frame of the camera. The higher chamber pressure allowed for the spray droplets to 

decrease in penetration and remain in the camera’s frame. 

 

 

Figure 3.8 – First Mode of 1500 bar & 1 bar and 20 

Mode 1 vs. Time for Injection Pressures of 600 bar 

For each of the three analyzed cases above, the energy fractions of the first mode against 

time were analyzed. Figure 3.9 focuses on the first case of comparing conditions 600 bar 

and 1 bar and 600 bar and 20 bar. At the SOI up until around 0.072ms, both conditions 

follow the same trend. 600 bar and 1 bar begins with a slightly higher intensity at the SOI 

of 55.9% and 600 bar and 20 bar is 52.8%. This is followed by a quick decrease and then 

increase up to 70% for both conditions at 0.072ms. After 0.072ms, there is a significant 

decrease in the energy fraction for 600 bar and 20 bar, the decrease for 600 bar and 1 bar 

is more gradual. Since the chamber pressure is higher for 600 bar and 20 bar, this played a 

role in the development of the energy fraction for the first mode over time. The results here 

indicate that the image intensity from all the input images that are being captured are the 

highest 0.072ms ASOI and that intensity decreases over time. The energy fraction between 

the two conditions meets again at 0.159ms where now the 600 bar and 20 bar condition has 
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a higher intensity at 31.5% and 600 bar and 1 bar is at 29.6%. The higher chamber pressure 

of 20 reveals that a steep decline in intensity was needed prior to a stabilization that 

occurred after 0.159ms. As was previously discussed in the analysis under section 3.1.1, a 

higher chamber pressure relates to increased aerodynamic forces that act on the particulates 

of the spray, which in turn intensify the interaction between the air and liquid. Over time, 

the particulates break down into smaller particulates, and this is where we see less intensity. 

 

Figure 3.9 – Mode 1 vs. Time for Injection Pressure of 600 bar 

Mode 1 vs. Time for Chamber Pressures of 1 bar 

Figure 3.10 analyzes all three chamber pressures of 1 bar that were analyzed in section 

3.1.2. Unlike the previous analysis for Figure 3.9, this case looks at three different injection 

pressures, all with a low chamber pressure of 1 bar. The higher two injection pressures of 

900 bar and 1500 bar have a higher intensity at the SOI, whereas the 600 bar intensity at 

the SOI is not the highest throughout the time period. The 1500 bar injection pressure has 

the highest energy fraction of 91% at the SOI, followed by 900 bar with an energy fraction 
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of 85.2%, and lastly 600 bar with the lowest energy fraction of 55.9%. The energy fraction 

for 600 bar and 1 bar is not at its highest point until 0.043ms ASOI, where it is at 70%.  

 

Figure 3.10 – Mode 1 vs. Time for Chamber Pressures of 1 bar 

All three of these conditions have a similar trend over the time period shown. A decrease 

is seen right ASOI followed with an increase up to around 0.058ms, and then another 

decrease taking place to 0.174ms. After the last decrease in intensities, there is a stable 

trend until the end of time. 

Mode 1 vs. Time for Injection Pressures of 1500 bar 

The last case where the energy fractions of the first mode are analyzed against time is for 

the two conditions with the highest injection pressure of 1500 bar, 1500 bar and 1 bar and 

1500 bar and 20 bar. Like the previous case, there is a decrease followed by a slight 

increase, and then another decrease until more stability is reached around 0.116ms. In 

section 3.1.4, the results indicated a higher energy fraction for 600 bar and 1 bar at the SOI. 

Here the same trend is seen for the lower chamber pressure, where 1500 bar and 1 bar has 
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a higher energy fraction that 1500 bar and 20 bar at the SOI. 1500 bar and 1 bar is at 91%, 

whereas 1500 bar and 20 bar is at 87%. Prior to the increase, both conditions have a drop 

in intensity by 0.029ms and then increase by 0.043ms ASOI.  

 

Figure 3.11 - Mode 1 vs. Time for Injection Pressure of 1500 bar 

After 0.043ms is when the next decrease occurs followed by stabilization after the 

overlap between the two conditions at 0.116ms.  

 
Discussion 

The cycle-to-cycle variability analysis provided a depth of insight into the use of 

POD. Seven different conditions were able to be analyzed and interpreted by comparing 

energy fractions, modes, coefficients, and the coefficients of the first mode over time. In 

the first section, 3.1.1, where the two conditions of injection pressure 600 bar were 

analyzed, the results provided a conclusion that 600 bar and 20 bar has a higher energy 

fraction for the first mode by 0.11, almost by half. This difference for the first mode is 

suspected to be linked to the higher chamber pressure of 20 bar rather than 1 bar. With 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
od

e 
1 

En
er

gy
 F

ra
ct

io
n

Time (ms)

1500 & 1

1500 & 20



 
 

 40

increased chamber pressure, the spray area is expected to increase. The comparison of 

modes and coefficients between these two conditions further confirmed that an increased 

chamber pressure would provide a higher intensity. When three different injection 

pressures were looked at for the same chamber pressure of 1, it was identified that the 

higher the injection pressure, the higher the energy fraction these conditions had for the 

first mode. This scenario also showed the range and width of the particulates is larger for 

the higher injection pressure of 1500 bar than that of the two other conditions (600 bar and 

900 bar). Another observation that was made for this same case is spray-induced 

turbulence. The fuel flow in the injector provides this spray turbulence, which helps the 

way the spray is distributed. High injection pressures that have high velocities produce 

more turbulence, which was seen in the 1500 bar condition. This then gives off an improved 

mixing between the fuel and air and the particulates are seen to cover more of the camera’s 

frame than in the other two conditions with a lower injection pressure. Under the last case, 

the two highest injection pressures are interpreted against each other, with each having a 

different chamber pressure. The effects of the higher chamber pressure of 20 bar exposed 

that any aerodynamic forces that are acting on the spray droplets decrease the spatial 

differences. With the lower chamber pressure of 1 bar, there is less prevention of droplet 

movement and therefore, increased the variability between modes 1 and 2.  

In sections 3.1.4 to 3.1.6 the results indicate that the higher the injection pressure, 

the higher the intensity is at the SOI, which confirms what has been discussed in the first 

three sections under 3.1. As time progresses the intensity decreases and then stabilizes. The 

higher chamber pressure leads to a more drastic decrease ASOI. The lower chamber 

pressure has a higher energy fraction at the SOI.  
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CHAPTER 4 

Conclusion and Recommendations for Future Work 

Conclusions 

 The objective of this research was to evaluate different approaches to snapshot POD 

and find ways to compare them quantitatively. These approaches are the eigenvalue 

problem, SVD with a correlation matrix, and SVD using the economy size decomposition. 

Variability is studied between repetitions of the same condition i.e., cycle-to-cycle 

variability, and among different operating conditions i.e., injection pressure and chamber 

pressure. This research began with analyzing three different methods to approach snapshot 

POD. The analysis consisted of comparing the energy fractions between each method. The 

energy fractions of the eigenvalue method and the SVD econ method returned the same 

results for the energy fraction, whereas SVD with the use of a correlation matrix differed. 

All three methods subtracted the ensemble mean from the data matrix, which to this 

research meant that the first mode of the data would be interpreted as the structure that has 

the higher variance. Therefore, the first mode is a representation of the most statistically 

significant spatial differences between the cycles. Any method could have been chosen to 

move forward with analyzing the cycle-to-cycle variability amongst conditions. 

Ultimately, the SVD econ method was selected as it can handle mega pixel images and is 

one of the most useful matrix decompositions. It can also be used as a basis for principal 

component analysis for taking high dimensional data and trying to understand it in terms 

of its dominant patterns or correlations. The SVD econ method was able to provide results 

on cycle-to-cycle variability amongst seven selected conditions. Key conclusions, 

outcomes, and contributions of this research include the following: 
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 The eigenvalue problem, SVD with the use of a correlation matrix, or SVD econ 

could all be used to analyze the variability amongst conditions and evaluate the 

quantitative differences in the spray patterns, and intensity in the variations, 

however, it is clear that the SVD is more economical when it comes to the number 

of lines within the code itself. 

 With increased chamber pressure, the spray area is expected to increase. The 

comparison of modes and coefficients between conditions of different chamber 

pressure indicated that an increased chamber pressure would provide a higher 

intensity. 

 When analyzing conditions of high injection pressures such as 1500, it was 

observed that high injection pressures that have high velocities produce more 

turbulence giving off an improved mixing between the fuel and air. This results in 

the particulates of the spray being seen to cover more of the camera’s frame than in 

the other two conditions with a lower injection pressure, leading to higher energy 

fractions. 

 The results generated for the energy fractions against time, exhibited that the higher 

the injection pressure, the higher the intensity is at the SOI. As time progresses the 

intensity decreases and then stabilizes. The higher chamber pressure leads to a more 

drastic decrease ASOI. The lower chamber pressure has a higher energy fraction at 

the SOI. 

The work shared in this thesis provides expansions and intuitions on valuable 

impacts to high-pressure gasoline sprays for internal combustion engines, specifically that 

of particulate formation across cycle-to-cycle variability. Even though this work focused 
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on the data analysis technique of POD, other methods could be used and this work could 

be expanded upon to analyze additional aspects of the spray and injector. 

 
Recommendations for Future Work 

 The work described within this thesis analyzed three different approaches to 

snapshot POD, however, only one was selected to move forward with for data analysis and 

interpretation. Future work could consider including all three approaches into the data 

analysis for further insights into any differences as well as interpreting space-time POD. 

Also, the ensemble mean was subtracted from the data matrix. A comparison to the 

ensemble mean not being subtracted would help to provide awareness of the useful features 

that are given from each effect and a description for the average spray structure for the first 

mode.  

The experiment that was performed for the analysis portion of this work included 

the use of three different injectors. The injector that was focused on for this analysis is 

Injector 1, which is a single hole centered injector. Injectors 2 and 3 are both double hole 

injectors and have different hole sizes than that of Injector 1. Performing POD on all three 

injector types would provide an additional contribution to this research. Looking into other 

variability like internal nozzle geometry would allow for more discussion and conclusions. 

 Lastly, there are several features of the spray images that were not focused on such 

as the spray contour, axis, diameter, penetration, droplet size and velocity, spatial 

distribution, and potential cavitation effects. Additional features and spray characteristics 

could be added to this list. Ultimately, inspecting more features of the spray for the different 

conditions would give meaningful contributions to this research. 
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