
ALGEBRA COMPREHENSIVE EXAMINATION

Brookfield, Mijares∗, Troyka

Fall 2024

Directions: Answer 5 questions only. You must answer at least one from each of linear
algebra, groups, and synthesis. Indicate CLEARLY which problems you want us to grade.
Otherwise, we will select which ones to grade, and they may not be the ones that you want
us to grade. Be sure to show enough work that your answers are adequately supported.

Notation: As usual, N, Q, Z, Zn, C, and R denote the sets of natural numbers, rational
numbers, integers, integers modulo n, complex numbers, and real numbers respectively,
regarded as groups or fields or vector spaces in the usual way.

Linear Algebra

(L1) Let V be a 2-dimensional real vector space and let T : V → V be a linear trans-
formation. Suppose v1 and v2 are vectors in V with {v1, v2} linearly independent,
T (v1) = v2 and T (v2) = v1 + v2. Show that T is invertible.

Answer: Since {v1, v2} linearly independent in a 2-dimensional space, {v1, v2} is a
basis for V .
Since T is a linear function from a 2-dimensional space to itself, T is invertible

if and only if T is injective (one-to-one), if and only if T is surjective (onto). We
will prove both injectivity and surjectivity even though either one of these suffices to
prove invertibility.
(a) T is injective: Suppose that T (v) = 0 for some v ∈ V . Then v = c1v1 + c2v2 for

some c1, c2 ∈ R, so

0 = T (v) = T (c1v1 + c2v2) = c1T (v1) + c2T (v2)

= c1v2 + c2(v1 + v2) = c2v1 + (c1 + c2)v2

Because {v1, v2} is linearly independent, this implies that c2 = c1 + c2 = 0 and
hence c1 = c2 = 0 and v = 0. Thus we have shown that T (v) = 0 implies v = 0,
which suffices to show injectivity.

(b) T is surjective: Let v ∈ V . Then v = c1v1 + c2v2 for some c1, c2 ∈ R. Set
w = (c2 − c1)v1 + c1v2. Then

T (w) = (c2 − c1)T (v1) + c1T (v2) = (c2 − c1)v2 + c1(v1 + v2)

= c1v1 + c2v1 = v

This shows that T is surjective.

(L2) Let V be a vector space, and let T : V → V be a linear operator that is not the
identity operator. Suppose T is idempotent, meaning that T 2 = T . Prove that T is
not invertible.
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Answer: Suppose towards a contradiction that T is invertible. Then T−1 exists, so
we can multiply by T−1 on both sides of the equation T 2 = T :

T−1T 2 = T−1T

T−1TT = T−1T

idV T = idV

T = idV .

This contradicts the assumption that T is not the identity. Therefore, T is not
invertible.

Note: this proof does not assume that V is finite-dimensional. If the student’s
proof depends on an assumption, explicit or implicit, that V is finite-dimensional,
then some small number of points may be deducted.

(L3) Let v1, . . . ,vk be non-zero vectors in Rn. Prove that, if {v1, . . . ,vk} is an orthogonal
set, then {v1, . . . ,vk} is an independent set.
Answer: Let c1, . . . , ck ∈ R such that c1v1 + · · · + ckvk = 0. Take the dot product
of each side with vi:

0 = vi · 0 = vi · (c1v1 + · · ·+ ckvk)

= c1(vi · v1) + c2(vi · v2) + · · ·+ ci(vi · vi) + · · ·+ ck(vi · vk).

Since {v1, . . . ,vk} is an orthogonal set, we have vi · vj = 0 if j ̸= i. So each term
cj(vi · vj) of the sum above is 0 except ci(vi · vi). Thus we obtain

ci(vi · vi) = 0,

which implies ci = 0 since vi ̸= 0.
Therefore, if c1v1+ · · ·+ ckvk = 0, then c1 = · · · = ck = 0. Therefore, {v1, . . . ,vk}

is an independent set.

Groups

(G1) Let G be a group and let ϕ : S4 → G be a homomorphism with (1 2 3 4) ∈ kerϕ.
Show that kerϕ = S4.
Answer: kerϕ is a normal subgroup of S4. The only normal subgroups of S4 are {1},
V = {1, (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, A4 and S4. The element (1 2 3 4) is clearly
not in the first two of these normal subgroups, and it is not in A4 since (1 2 3 4) is
odd. So kerϕ = S4.

OR
kerϕ is a normal subgroup of S4. A normal subgroup is a union of conjugacy

classes. There are six 4-cycles in the conjugacy class of (1 2 3 4) so these six 4-cycles
are in kerϕ. In addition, (1 2 3 4)(1 2 4 3) = (1 3 2), so this 3-cycle and its 7 conjugates
are in kerϕ. So far we have identified 14 elements in kerϕ. But, since the order of
kerϕ must divide |S4| = 24, this can happen only if kerϕ = S4.

(G2) Let G be finite cyclic group of order m and let H be finite cyclic group of order n.
Prove that G×H is cyclic if and only if gcd(m,n) = 1.
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Answer: Suppose gcd(m,n) = 1. Let g ∈ G and h ∈ H be such that G = ⟨g⟩ and
H = ⟨h⟩. Note that the order of (g, h) in G×H is |(g, h)| = lcm(|g|, |h|) = lcm(m,n).
But gcd(m,n) = 1 ⇒ lcm(m,n) = mn. Thus |(g, h)| = |G||H| = |G×H|, and (g, h)
is a generator for G×H.

Conversely, suppose G×H is cyclic and let (a, b) be a generator for G×H. Then
|(a, b)| = |G × H| = |G||H| = mn. On the other hand, |(a, b)| = lcm(|a|, |b|). Note
that a is a generator for G:

If g ∈ G, then (g, eH) ∈ G × H. Therefore, there exists k such that (a, b)k =
(ak, bk) = (g, eH). So g = ak and G = ⟨a⟩ because g is arbitrary. Analogously,
H = ⟨b⟩. Then, mn = |(a, b)| = lcm(|a|, |b|) = lcm(m,n). Thus gcd(m,n) = 1.

(G3) Prove that (Q,+) is not cyclic.

Answer: Let a ∈ Q and consider the cyclic subgroup ⟨a⟩. If a = 0, then ⟨a⟩ = {0}
and so ⟨a⟩ ̸= Q in this trivial case. Otherwise, if a ̸= 0, then ⟨a⟩ = {na | n ∈ Z}. In
particular, a/2 ∈ Q is not in ⟨a⟩. (In detail, if a/2 ∈ ⟨a⟩, then a/2 = na for some
n ∈ Z. Since a ̸= 0, we can cancel to get 1/2 = n ∈ Z, a contradiction.) Thus
⟨a⟩ ≠ Q in this case as well. Since no cyclic subgroup of Q is equal to Q, Q is not
cyclic.

Synthesis

(S1) Let Mn×n(R) be set of n×n matrices with entries in R and let GLn(R) be the group
of invertible n × n matrices with matrix multiplication as group operation. Recall
that A ∈ Mn×n(R) is orthogonal if ATA = AAT = I, where I is the identity.
Let On(R) = {A ∈ Mn×n(R) : A is orthogonal }. Prove that On(R) is a subgroup of
GLn(R).

Answer: The identity I is obviously orthogonal. Also, ifA,B ∈ On(R) then (AB)TAB =
BTATAB = BT IB = BTB = I. Similarly AB(AB)T = I so, AB is orthogonal. Fi-
nally, it’s clear that if A ∈ On(R) then A−1 = AT . Moreover, AT (AT )T = ATA = I.
And (AT )TAT = AAT = I. So, A−1 ∈ On(R).

(S2) Find the center of GL2(R). Explain.
Reminder: The center of a group G is Z(G) = {g ∈ G | gh = hg for all h ∈ G}.

Answer: Suppose

[
a b
c d

]
is in the center of GL2(R). Then this matrix commutes

with all other matrices, in particular,[
0 1
0 0

] [
a b
c d

]
=

[
a b
c d

] [
0 1
0 0

] [
0 0
1 0

] [
a b
c d

]
=

[
a b
c d

] [
0 0
1 0

]
The first of these matrix equations holds if and only if c = a− d = 0 and the second
holds if and only if b = a − d = 0. Thus any matrix in the center has the form[
a 0
0 a

]
= aI for some a ∈ R. Since any scalar multiple of I commutes with all other

matrices, and so is in the center, we have shown that Z(GL2(R)) = {aI | a ∈ R∗}.
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(S3) Define H = {A ∈ GL2(R) : det(A) ∈ Q} (where R denotes the set of real numbers
and Q denotes the set of rational numbers).
(a) Prove that H is a subgroup of GL2(R).
(b) Show that H is not equal to GL2(Q).

Answer: First of all, det(I) = 1 ∈ Q, so I ∈ H.
If A,B ∈ H, then det(A), det(B) ∈ Q, so det(AB) = det(A) det(B) ∈ Q (since

the product of two rational numbers is rational). Thus AB ∈ H.
If A ∈ H, then det(A) ∈ Q, so det(A−1) = 1

det(A)
∈ Q (since the reciprocal of a

rational number is rational). Therefore, H is a subgroup.

Furthermore, H ̸= GL2(Q): indeed,

(√
2 0

0
√
2

)
is in H since its determinant is 2,

but it is not in GL2(Q) since
√
2 ̸∈ Q.
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