ALGEBRA COMPREHENSIVE EXAMINATION

FALL 2000

Answer 5 questions only. You must answer *at least one* from each of Groups, Rings, and Fields. Please show work to support your answers.

GROUPS

- 1. Prove: (a) A group of order 80 need not be abelian.
 - (b) A group of order 80 must be solvable.
- 2. Let H and K be subgroups of a group G with K normal in G and $G = \langle H, K \rangle$. If H and K are each solvable, prove that G is solvable.
- 3. Let P be a Sylow p-subgroup of G and N a normal subgroup of G. Prove
 - (a) $P \cap N$ is a Sylow p-subgroup of N.
 - (b) PN/N is a Sylow p-subgroup of G/N.

RINGS

- 1. Let R and S be rings with identity, $1 \in R$, $S \neq 0$, and let $f:R \rightarrow S$ be a ring homomorphism of R onto S. Prove:
 - (a) S has an identity and it is f(1).
 - (b) If R is commutative, then S is commutative.
 - (c) If a is a unit element of R, then f(a) is a unit element of S.
- Let R be a commutative ring with identity 1. A principal ideal is an ideal generated by a single element and R is a Principal Ideal Ring (PID) if every ideal is principal. Since the ring of integers Z has a Euclidean algorithm, it is PID and you may use that fact that if needed.
 - (a) Find and verify a principal generator for the ideal generated by 8 and 12 in **Z**.
 - (b) Prove that the homomorphic image of a PID is a PID
 - (c) Prove that $\mathbf{Z}[x]$, the polynomials over \mathbf{Z} , is not a PID.
- 3. Let $R = \{a/b \in \mathbf{Q} \mid b \text{ is odd}\}$ with the usual rational number operations.
 - (a) Prove that R is an integral domain.
 - (b) Find U(R), the group of units of R.
 - (c) Prove that $R\setminus U(R) = R U(R)$ is the unique maximal ideal in R.

FIELDS

- 1. Let E be the splitting field of $x^8 2$ over the rationals **Q**.
 - (a) Prove that $[E : \mathbf{Q}] = 16$.
 - (b) Show that the Galois group $G(E/\mathbf{Q})$ is not abelian.
- 2. Let $\mathbf{Z}_p = \{0, 1, 2, ..., p-1\}$ be the field of integers modulo *p* and f(*x*) an irreducible polynomial in

 $\mathbf{Z}_{p}[x]$ of degree *n*. Prove that f(x) is a factor of $x^{p^{n}} - x$.

3. Let F be the field of integers modulo 5 and let $f(x) = x^3 + 3x^2 + 3x + 2$. Prove that f(x) is reducible over F, find the splitting field K, and determine the number of elements of K.