ALGEBRA COMPREHENSIVE EXAMINATION

Spring 2004

Brookfield Bishop* Cates.

Answer 5 questions only. You must answer *at least one* from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

GROUPS

- 1. Let G be a finite group and S a nonempty subset of G with the property that SS = S. Prove that S is a subgroup of G.
- 2. Classify the group of units of the ring \mathbf{Z}_{20} according to the Classification Theorem of Finite (or Finitely Generated) Abelian Groups.
- 3. Let G be a group of order 275 (= $5^2 \cdot 11$). Show that $G'' = \{e\}$, where G' is the derived group of G, the subgroup generated by the commutators of G.

RINGS

- 1. Prove that a Euclidean domain satisfies the ascending chain condition on its ideals; i.e., if $I_1 \subseteq I_2 \subseteq I_3 \subseteq ...$ is a chain of ideals in a ring *R*, then there exists an integer *n* such that thereafter, $I_n = I_{n+1} = ...$
- 2. Let *R* be the ring of functions from **R** to **R**, the real numbers. Reminder: For *f*, $g \in R$, f + g and fg are defined by (f + g)(x) = f(x) + g(x) and (fg)(x) = f(x)g(x) for all $x \in \mathbf{R}$.
 - (a) Show that $I = \{f \in R \mid f(0) = 0\}$ is an ideal of *R* which is maximal,
 - (b) If $\mathbf{Z}[x]$ is the ring of polynomials over the integers \mathbf{Z} , show that $J = \{f \in \mathbf{Z}[x] \mid f(0) = 0\}$ is an ideal of $\mathbf{Z}[x]$ which is *not* maximal.
- 3. Ler *R*[[*x*]] denote the ring of formal power series of ring *R*.
 - (a) Find $(1+x)^{-1}$ in **Q**[[x]] where **Q** is the field of rational numbers.
 - (b) Verify that $\mathbf{Q}[[x]]$ is not a field.

FIELDS

- 1. Let **Q** be the field of rationals and **C** be the complex numbers and let $\alpha \in \mathbf{C}$ be a zero of the irreducible polynomial $p(x) = x^4 2x^2 + 9$.
 - (a) Confirm that p(x) is irreducible over **Q**
 - (b) (i) Express α^{-1} as a **Q**-linear combination of $\{1, \alpha, \alpha^2, \alpha^3\}$.
 - (ii) Find $(1+\alpha)^{-1}$ as a **Q**-linear combination of $\{1, \alpha, \alpha^2, \alpha^3\}$.
- 2. Let $GF(p^n)$ denote the Galois field with p^n elements.
 - (a) Prove that $GF(p^a) \subseteq GF(p^b)$ iff *a* divides *b*.
 - (b) Prove that $GF(p^a) \cap GF(p^b) = GF(p^d)$, where d = gcd(a, b).

3. Recall that an extension field *E* of a field *F* is called <u>simple</u> if it can be generated by a single element, say $E = F(\alpha)$ (= $F[\alpha]$ if α is algebraic over *F*), for some $\alpha \in E$. For $F = \mathbf{Q}$, the field of rational numbers, $\mathbf{Q}[\sqrt{3}]$ and $\mathbf{Q}[\sqrt[3]{2}]$ are simple algebraic extensions of **Q**. Produce (and verify) a real number α such that $\mathbf{Q}[\sqrt{3}, \sqrt[3]{2}] = \mathbf{Q}[\alpha]$.