ALGEBRA COMPREHENSIVE EXAMINATION

Spring 2005

Bishop* Brookfield Cates.

Answer 5 questions only. You must answer at least one from each of groups, rings, and fields. Be sure to show enough work that your answers are adequately supported.

GROUPS

- Let G be an abelian group, $H = \{a^2 \mid a \in G\}$ and $K = \{a \in G \mid a^2 = e\}$. Prove that $H \cong G/K$. 1.
- Assume G = HZ(G), where H is a subgroup of G and Z(G) is the center of G. Show: 2. a. $Z(H) = H \cap Z(G)$
 - - b. G' = H' (Where G' is the derived group of G)
 - c. $G/Z(G) \cong H/Z(H)$
- 3. Prove:
 - A group of order 80 need not be abelian (twice) by exhibiting two non-isomorphic nona. abelian groups of order 80 (with verification).
 - b. A group of order 80 must be solvable.

RINGS

- 1. Let *R* be a ring with ideals *A* and *B*.
 - a. Define a natural function φ : $R/A \cap B \to R/A \times R/B$ and show that it is a ring homomorphism.
 - b. Calculate Ker(φ), the kernel of φ .
 - c. Prove that if R = A + B, then φ is an isomorphism.
 - d. Show that the converse of (c) is false.
- Let R be a subring of a field F such that, for every $x \in F$, either $x \in R$ or $x^{-1} \in R$. Prove that the 2. ideals of R are linearly ordered; i.e., if I and J are ideals of R, then either $I \subseteq J$ or $J \subseteq I$.
- Let $M_2(\mathbf{Q})$ be the ring of 2×2 all matrices with rational enties. Prove: 3.
 - a. $M_2(\mathbf{Q})$ has no nontrivial ideals.
 - b. $M_2(\mathbf{Q})$ has an identity but is not a field.

FIELDS

- Find the minimal polynomial for $\alpha = \sqrt{5 + \sqrt{2}}$ over the field of rationals **Q** and prove it is minimal. 1.
- 2. Let $GF(p^n)$ denote the Galois field with p^n elements.
 - Prove that $GF(p^a) \subseteq GF(p^b)$ iff *a* divides *b*. (a)
 - (b) Prove that $GF(p^a) \cap GF(p^b) = GF(p^d)$, where d = gcd(a, b).
- Let F be a finite field of $n = p^m$ elements. Find necessary and sufficient conditions to insure that 3. $f(x) = x^2 + 1$ has a root in F; i.e., f is not irreducible over F.