Department of Mathematics California State University Los Angeles

Master's Degree Comprehensive Examination in

NUMERICAL ANALYSIS FALL 2017

Instructions:

- Do exactly two problems from Part A AND two problems from Part B. If you attempt more than two problems in either Part A or Part B, and do not clearly indicate which two are to count, only the first two problems will be counted towards your grade.
- No notes, books, calculators, or cell phones may be used during this exam.

PART A: Do only TWO problems

1. (a) Let
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 8 & 0 \\ -2 & 0 & 24 \end{pmatrix}$$
.

- i. [6 points] Find the LU factorization of A, where L is a unit lower triangular and U is an upper triangular matrix.
- ii. [5 points] Find the LDL^T factorization of A, where L is a unit lower triangular and D is a diagonal matrix.
- iii. [6 points] Find the $R^T R$ factorization of A, where R is an upper triangular matrix with positive diagonal entries. What is this factorization called?
- (b) [8 points] Show that an arbitrary $n \times n$ symmetric matrix S is positive definite if and only if it can be factored into $R^T R$, where R is an upper triangular matrix with positive diagonal entries.

2. (a) Let

$$B = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{array} \right).$$

Note that B is symmetric and nonsingular $(\det(B)=-1)$.

- i. In one sentence each, give a reason for your answer to the following questions: [3 points each]
- (i.1.) Is B diagonalizable?
- (i.2.) Is B positive definite?
- (i.3.) Is B an orthogonal matrix?
- ii. [10 points] By finding the spectral radius of its iteration matrix, determine whether or not Gauss-Seidel iteration converges for the linear system $B\mathbf{x} = \mathbf{b}$, where B is given above and **b** is an arbitrary vector.
- (b) [6 points] Show that if an *arbitrary* 3×3 matrix C with positive entries is strictly diagonally dominant, then Jacobi iteration converges for the linear system $C\mathbf{x} = \mathbf{d}$, for all vectors \mathbf{d} . (Hint: Use Gershgorin's circle theorem on the Jacobi iteration matrix.)
- 3. (a) [5 points] Let Q be an orthogonal matrix. Fill in each of the following blanks:
 - i. $Q^T Q = \dots$
 - ii. $det(Q) = \dots$
 - iii. Condition number $\kappa(Q) = \dots$
 - iv. $||Q||_{\infty} = \dots$
 - v. If \mathbf{c}_1 and \mathbf{c}_2 are columns of Q, then the inner product $\mathbf{c}_1^T \mathbf{c}_2 = \dots$
 - (b) Let

$$A = \left(\begin{array}{rrrr} 2 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{array}\right)$$

- i. [7 points] Find the QR decomposition of A; that is, find an orthogonal matrix Q and an upper triangular matrix R such that A = QR.
- ii. [4 points] Obtain the first iterate of the QR method for finding the eigenvalues of A.
- iii. [6 points] Perform two iterations of the Power Method to the matrix A with initial vector $\mathbf{x}^{(0)} = (1, 0, 0)^T$ to obtain $\mathbf{x}^{(2)}$.
- (c) [3 points] Give one advantage and one disadvantage of Power Method over QR method when applied to solve the eigenvalue problem.

PART B: Do only TWO problems

1. Consider the elliptic boundary value problem (BVP):

$$U_{xx} + U_{yy} = 6 \text{ for } 0 < x < 3, 0 < y < 3$$

$$U(x,0) = 3x^2, \ U(x,3) = 6x + 3x^2 \text{ for } 0 \le x \le 3$$

$$U(0,y) = 0, \ U(3,y) = 6y + 27 \text{ for } 0 \le y \le 3$$

- (a) [4 points] An exact solution of this BVP has the form $U(x, y) = Axy + Bx^2$, where A and B are constants. Find A and B.
- (b) [3 points] Is there more than one correct answer to Part (a)? Briefly explain why or why not.
- (c) [10 points] Use the usual 5-point approximation to $U_{xx} + U_{yy}$ to get a scheme that approximates the given partial differential equation. Then, find the system of 4 linear equations in the 4 unknowns $u_1 = u(1,1), u_2 = u(2,1), u_3 = u(1,2), u_4 = u(2,2)$ that results from applying this scheme to the given BVP on the grid shown below. (Note that h = 1).
- (d) [3 points] Explain why the solution to the system of equations in Part (c) is unique.
- (e) [5 points] Now suppose that for x = 0 (0 < y < 3), we replace the given boundary values (U(0, y) = 0) with the boundary condition $U_x(0, y) = 0$. Approximating U_x by central differences, express the approximate solution u(0, 1) in terms of u(0, 2) and u(1, 1).

2. Consider the following difference approximation to the parabolic partial differential equation (PDE) $U_t = cU_{xx}$ (0 < x < 1, t > 0), where c > 0 is a constant.

 $-cru_{i-1,j+1} + (1+2cr)u_{i,j+1} - cru_{i+1,j+1} = u_{i,j}.$ (1)

Here, $u_{i,j} = u(i\Delta x, j\Delta t) = u(ih, jk)$ and $r = k/h^2$.

- (a) [2 points] Is this difference scheme *explicit* or *implicit*?
- (b) [5 points] Suppose that for x = 0 and x = 1, U(x, t) = 0 for all t > 0. Letting

$$\mathbf{v}_{j} = [u_{1,j}, u_{2,j}, \dots, u_{N-1,j}]^{T},$$
(2)

find matrices B and C (of order N-1) so that the scheme takes the form

$$B\mathbf{v}_{j+1} = C\mathbf{v}_j. \tag{3}$$

- (c) [10 points] Use EITHER the von Neumann (Fourier) method OR the matrix (eigenvalue) method to determine the values of $r = k/h^2$ for which this scheme is stable.
- (d) [3 points] The truncation error for this scheme is $T(h, k) = O(k) + O(h^2)$. Explain why this fact implies that the scheme is consistent with the given PDE.
- (e) [5 points] Define the notion of *convergence* of a difference approximation for a PDE and, with the help of previous parts of this problem, explain why the given scheme (together with appropriate initial and boundary conditions) converges for the values of r found in part (c).
- 3. Consider the PDE

$$U_{xx} + xU_{xy} - 2x^2 U_{yy} = 0$$

with initial data given on y = 0.

- (a) [4 points] Determine all values of x for which the given PDE is hyperbolic.
- (b) [5 points] Determine the two characteristic directions (slopes), dy/dx, for the given PDE at a general point (x, y).
- (c) [6 points] Using the result of part (b), find the **exact values** of the coordinates of the point of intersection, R, of the characteristic curves through the points P(1,0)

(d) [2 points] Give the interval of dependence for U(x, y) at the point R of part (c).

- (e) [4 points] Derive a consistent finite difference approximation for the xU_{xy} term. (You need **not** show that your approximation is consistent.)
- (f) [4 points] Suppose we approximate the given PDE by a consistent explicit difference scheme with h = k = 1. Referring to the CFL condition, explain why or why not this scheme converges at the point R of part (c).