Department of Mathematics California State University Los Angeles

Master's Degree Comprehensive Examination in

NUMERICAL ANALYSIS SPRING 2018

Instructions:

- Do exactly two problems from Part A AND two problems from Part B. If you attempt more than two problems in either Part A or Part B, and do not clearly indicate which two are to count, only the first two problems will be counted towards your grade.
- No notes, books, calculators, or cell phones may be used during this exam.

PART A: Do only TWO problems

- (a) [4 points] Let A be an m × n matrix and let B be an n × p matrix. Determine the number of multiplications (of real numbers) needed to compute the product AB. Show your work.
 - (b) Let

$$C = \left(\begin{array}{rrr} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 3 & 4 \end{array}\right).$$

- i. [8 points] Find a permutation matrix P, a unit lower triangular matrix L, and an upper triangular matrix U such that PC = LU.
- ii. [2 points] To solve $C\mathbf{x} = \mathbf{b}$ (where **b** is an arbitrary 3-vector) by Gaussian elimination with partial pivoting, which operation should be performed first?
- (c) [8 points] Suppose that the LU decomposition of a matrix M is given by

$$M = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 2 & 4 \\ 0 & 1 & 3 \\ 0 & 0 & 1 \end{pmatrix}, \text{ and that } \mathbf{c} = \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

Use this LU decomposition of M with the forward/backward substitution method to solve $M\mathbf{x} = \mathbf{c}$.

(d) [3 points] Give one advantage of the Gaussian elimination method over the Gauss-Seidel iterative method in solving a system of linear equations. 2. (a) Let $A = \begin{pmatrix} 1 & k & k \\ k & 1 & 0 \\ k & 0 & 1 \end{pmatrix}$, where k is a real number.

Determine all values of k for which

- i. [3 points] A is strictly diagonally dominant.
- ii. [4 points] A is positive definite.
- iii. [3 points] A is orthogonal.
- iv. [6 points] The Jacobi iteration method applied to $A\mathbf{x} = \mathbf{b}$ (where **b** is an arbitrary 3-vector) converges.
- (b) [6 points] Let $B = \begin{pmatrix} 1 & k & k \\ 0 & 1 & k \\ 0 & 0 & 1 \end{pmatrix}$, where k is a real number. Determine the values of k for which the Cause Soidel iteration method applied to $B\mathbf{x} = \mathbf{b}$ (where **b** is

of k for which the Gauss-Seidel iteration method applied to $B\mathbf{x} = \mathbf{b}$ (where **b** is an arbitrary 3-vector) converges.

(c) [3 points] Give one advantage of the Gauss-Seidel method over the Gaussian elimination method in solving a system of linear equations.

3. Let
$$A = \begin{pmatrix} 1 & -1 \\ 2 & 4 \end{pmatrix}$$
 with eigenvalues $\lambda_1 = 2$ and $\lambda_2 = 3$. Let $\mathbf{q}_0 = (-1, 3)^T$.

- (a) [4 points] Find the associated eigenvectors of A.
- (b) [6 points] Will the Power Method converge when applied to the matrix A with starting vector \mathbf{q}_0 ? If yes, which eigenpair of A will it converge to? If no, explain why. Justify your answer without performing any Power Method iterations.
- (c) [7 points] Let λ be an eigenvalue of an $n \times n$ matrix B with associated eigenvector \mathbf{v} and let ρ be a real number with $\rho \neq \lambda$. Show that $1/(\lambda \rho)$ is an eigenvalue of the matrix $(B \rho I)^{-1}$ with associated eigenvector \mathbf{v} .
- (d) [8 points] Perform one iteration of the *inverse* Power Method with shift $\rho = 4$. Which eigenvector of A will this method converge to? What is the ratio of convergence?

PART B: Do only TWO problems

1. (a) [6 points] Given the partial differential equation (PDE)

$$xu_{xx} - yu_{yy} = \sin x,$$

determine regions in the xy-plane (values of (x, y)) such that this PDE is:

- i. elliptic
- ii. parabolic
- iii. hyperbolic
- (b) For the initial-boundary value problem

$$u_t = 4u_{xx} \text{ for } 0 \le x \le 1, t > 0$$

$$u(x,0) = x(1-x) \text{ for } 0 \le x \le 1$$

$$u(0,t) = 0, \ u(1,t) = 0 \text{ for } t > 0$$

- i. [9 points] Explain (in one sentence each) what it means for a finite difference approximation to the given initial-boundary value problem to be each of the following: consistent; stable; convergent.
- ii. [4 points] Construct a finite difference approximation to the given initialboundary value problem that is consistent and stable (for the values of k/h^2 that you specify). You need *not show* that your scheme is consistent or stable.
- iii. [3 points] Is it possible for a finite difference approximation to the given initial-boundary value problem to be consistent but not stable? If so, give an example; if not, explain why not.
- iv. [3 points] Is it possible for a consistent finite difference approximation to the given initial-boundary value problem to be stable but not convergent? If so, give an example; if not, explain why not.
- 2. Suppose that the function u(x, y) defined on a square $[0, 3] \times [0, 3]$ satisfies

$$yu_{xx} + xu_{yy} = 0 \tag{1}$$

with boundary conditions:

$$u(x,0) = x, \ u(x,3) = 6$$

 $u(0,y) = 2y, \ u(3,y) = 3 + y$

- (a) [4 points] What are the maximum and minimum values achieved by u(x, y) to the above boundary value problem? At what points (x, y) do they occur?
- (b) [10 points] Find the system of linear equations that results from solving this boundary value problem using the usual 5-point scheme with $\Delta x = \Delta y = 1$. Write your system in the form $A\mathbf{u} = \mathbf{b}$.

- (c) [4 points] Explain why the solution to the system of equations in part (b) exists and is unique.
- (d) [7 points] Now suppose that the boundary condition u(x,3) = 6 is replaced by $u_y(x,3) = 2x$. Write a second order accurate finite difference equation to approximate the solution at the point (2,3) in terms of u(1,3) and u(2,2).
- 3. (a) [6 points] The one-way wave equation

$$u_t - 3u_x = 0, \ u(x,0) = f(x), \ t > 0, x > 0$$
 (2)

could be solved using the scheme

$$\frac{u_{i,j+1} - u_{i,j}}{k} - 3\frac{u_{i+1,j} - u_{i,j}}{h} = 0$$
$$u_{i,0} = f(ih),$$

where $h = \Delta x$, $k = \Delta t$ and $u_{i,j} \approx u(ih, jk)$. Determine the condition for stability for the above scheme.

(b) Suppose

$$u_x - 3xu_y = x, \ y > 0, -\infty < x < \infty$$

 $u(x, 0) = 2x, -\infty < x < \infty.$

- i. [7 points] Calculate the value of y so that Q(1, y) is on the characteristic curve through P(2, 0). Sketch the characteristic curve and label the points P and Q.
- ii. [6 points] Compute the exact value of u_Q , where Q is the point found in (i).
- iii. [6 points] Use the method of numerical characteristics to calculate the first approximations to the value of y_Q and u_Q .