Topology Comprehensive Exam Fall 2008

(Beer, Krebs, Verona)

Do 5 of the 7 problems below; each is worth 20 points.

- 1. Explain precisely each of the following
 - (a) regular topological space $\langle X, \tau \rangle$
 - (b) Urysohn's Lemma
 - (c) Cauchy sequence $\langle x_n \rangle$ in a metric space $\langle X, d \rangle$
 - (d) boundary of a subset A of a topological space $\langle X, \tau \rangle$
 - (e) product topology for a product of topological spaces $\{\langle X_i, \tau_i \rangle : i \in I\}$
 - (f) path connected topological space $\langle X, \tau \rangle$
 - (g) bounded subset B of a metric space $\langle X, d \rangle$.
- 2. In the plane \mathbb{R}^2 with the usual metric, put $A := \{(x, y) : x^2 + y^2 = 1\}$ and put $B := \{(x, y) : x^2 + y^2 = 1 \text{ and } x \ge 0\}.$
 - (a) Explain why A and B are both connected.
 - (b) Explain why A and B are not homeomorphic.
- 3. Give an example of
 - (a) a connected topological space that is not locally connected;
 - (b) a topological space that is not Hausdorff;
 - (c) a continuous bijection between topological spaces that is not a homeomorphism.
- 4. Consider \mathbb{R}^2 equipped with the topology τ having as a subbase all sets of the form
 - $U_a := \{(x, y) : x \neq a\}$ where $a \in \mathbb{R}$.
 - (a) Prove that $V \in \tau$ iff for some finite subset F of \mathbb{R} , $V = \{(x, y) : x \notin F\}$.
 - (b) Prove that $\langle \mathbb{R}^2, \tau \rangle$ is compact.
- 5. Let $\langle X, \tau \rangle$ and $\langle Y, \sigma \rangle$ be topological spaces.
 - (a) Show that if $f: X \to Y$ is continuous, and $A \subseteq X$, then f|A is continuous.
 - (b) Suppose A, B are closed subsets of X with union X and f|A and f|B are both continuous. Prove f is continuous.

In the above both A and B are of course equipped with the relative (subspace) topology.

6. Suppose we equip the $[0,1] \times [0,1]$ with the dictionary order:

$$(x_1, y_1) \preceq (x_2, y_2)$$
 if either $x_1 < x_2$, or $x_1 = x_2$ and $y_1 \le y_2$.

Giving the square the order topology, show

- (a) $\{(x, y) : 0 < x < 1\}$ is open; (b) $\{(x, y) : y = \frac{1}{2}\}$ is not closed.
- 7. Let $\langle X, d_X \rangle$ and $\langle Y, d_Y \rangle$ be metric spaces. Equip $X \times Y$ with the metrics $\rho_1((x_1, y_1), (x_2, y_2)) = \max \{ d_X(x_1, x_2), d_Y(y_1, y_2) \}$ and $\rho_2((x_1, y_1), (x_2, y_2)) = d_X(x_1, x_2) + d_Y(y_1, y_2)$. Prove that ρ_1 and ρ_2 determine the same open sets in the product.