Fall 2009 Topology Comprehensive Exam Beer* and Krebs Do any 5 of the 7 problems below; they are worth 20 points each

- **1.** Let \mathbb{R} denote the set of real numbers. Let $X = \mathbb{R}^2 \setminus \{(0,0)\}$. (In other words, X equals the plane minus the origin.) Topologize X by taking the open sets to be \emptyset , X, and every set of the form $X \setminus (\ell_1 \cup \cdots \cup \ell_n)$ for some positive integer n and lines ℓ_1, \ldots, ℓ_n through the origin.
 - (a) Prove that X is connected.
 - (b) Prove that X is not Hausdorff.
- 2. Give an example of a bijective continuous function which is not a homeomorphism.
- **3.** Let X and Y be topological spaces such that X is compact. Suppose that f is a continuous function from X to Y such that f is surjective. Let (A_j) be a decreasing sequence of nonempty closed sets in Y. (In other words, for all j we have that A_j

is closed in Y and $A_j \neq \emptyset$ and $A_{j+1} \subseteq A_j$.) Prove that $\bigcap_{j=1}^{\infty} f^{-1}(A_j)$ is nonempty.

- **4.** (a) Explain how you know that \mathbb{R} and \mathbb{R}^2 are not homeomorphic.
 - (b) Produce a homeomorphism from (2, 8) to (-1, 1).
 - (c) Produce a homeomorphism from (2, 8) to $(-\infty, \infty)$.

Note: in parts (b) and (c) you need only exhibit the function; you need not prove that it is a homeomorphism.

- 5. (a) Prove that a separable metric space $\langle X, d \rangle$ is second countable.
 - (b) Give an example of a metric space $\langle X, d \rangle$ that is not separable.
- 6. Let $\{Y_i : i \in I\}$ be a collection of topological spaces. Equip $\prod_{i \in I} Y_i$ with the product topology and for each $i \in I$, let π_i be the projection map from the product onto Y_i . Prove that if X is a topological space, then a function $f : X \to \prod_{i \in I} Y_i$ is continuous if and only if $\forall i \in I, \pi_i \circ f$ is continuous.
- **7.** Prove that each metric space $\langle X, d \rangle$ is normal.