Fall 2016 Topology Comprehensive Exam Beer*, Krebs

Please do any FIVE of the seven problems below. They are worth 20 points each. Indicate CLEARLY which five you want us to grade; otherwise, if you do more than five problems, we will grade the first five problems that you do. In the sequel \mathbb{R} denotes the real numbers and \mathbb{N} denotes the positive integers.

- 1. Recall that a set A is called *countable* if it is empty or is nonempty and finite or it is nonempty and in one-to-one correspondence with \mathbb{N} . Let τ be the collection of subsets of \mathbb{R} of the form $U \setminus T$ where U is an open subset of \mathbb{R} in the usual topology and T is countable. Prove that τ is a topology which is strictly finer than the usual topology. Feel free to use standard facts about countable sets in your proof.
- 2. Let $\langle X, \tau \rangle$ be a topological space and suppose $f: X \to (0, \infty)$ is a function that is continuous at $p \in X$. Prove that $g: X \to (0, \infty)$ defined by $g(x) = \frac{1}{f(x)}$ is also continuous at p.
- 3. Let $\langle X, \tau \rangle$ and $\langle Y, \sigma \rangle$ be connected topological spaces. Prove that $X \times Y$ equipped with the product topology is connected.
- 4. Let ~ be an equivalence relation on a nonempty set X. Define $d: X \times X \to [0, \infty)$ by

$$d(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y \text{ and } x \sim y \\ 3 & \text{if } x \nsim y. \end{cases}$$

(a) Prove that d is a metric on X.

(b) Describe the open balls of radius 2 in this metric space in terms of the equivalence relation.

- 5. Let $\langle X, d \rangle$ be a metric space and let τ_d be the topology determined by d. Prove that $\langle X, \tau_d \rangle$ is normal.
- 6. Let $\langle X, \tau \rangle$ be a Hausdorff space.
 - (a) Prove that each τ -compact subset of X is closed.
 - (b) Let σ be the collection of subsets A of X such that either $A = \emptyset$ or $X \setminus A$ is τ -compact. Prove using in part the assertion of (a) above that σ is a topology on X.
- 7. Suppose $\langle X, \tau \rangle$ is a topological space with at least two points. Prove the following conditions are equivalent.
 - (1) τ is either the discrete topology or the indiscrete topology;
 - (2) Each function $f: \langle X, \tau \rangle \to \langle X, \tau \rangle$ is continuous.
 - (*Hint*: for (2) \Rightarrow (1), first show that if A is a nonempty proper subset of X and $p \in X$, $\exists f : X \to X$ with $f^{-1}(A) = \{p\}$)