Spring 2009 Topology Comprehensive Exam DRAFT 5 - 18 - 2009Beer, Krebs^{*}, Verona

Do any five (5) of the problems that follow. Each is worth 20 points.

- **1.** Two metrics d and d' on a set X are called *metrically equivalent* if the identity map $i: (X, d) \to (X, d')$ and its inverse are both uniformly continuous. Show that if d and d' are metrically equivalent then X is complete under d if and only if X is complete under d'.
- **2.** Consider the topology τ on \mathbb{R} having as a base all sets of the form [a, b] where a < b. (a) Show τ is properly finer than the usual topology τ_u .
 - (b) Is (\mathbb{R}, τ) connected? Justify your answer.
- **3.** Let X be a topological space. Show that the following two assertions are equivalent: (a) Any subset of X is normal.

(b) For every pair A, B of subsets of X such that $\overline{A} \cap B = \emptyset$ and $A \cap \overline{B} = \emptyset$, there exist disjoint open sets containing them.

4. (a) Prove that each second countable space is first countable.

(b) Prove that each separable metric space is second countable.

5. Let \mathbb{R} denote the set of real numbers. Let $X = \{(a,b) \mid a, b \in \mathbb{R}^2\} \setminus \{(0,0)\}$. (In other words, X equals the plane minus the origin.) Let

 $\tau = \{X \setminus \ell \mid \ell \text{ is a line through the origin in } \mathbb{R}^2\},\$

and endow X with the topology generated by τ .

(a) Prove that every open set in X equals \emptyset , X, or a set of the form $X \setminus (\ell_1 \cup \cdots \cup \ell_n)$ for some positive integer n and lines ℓ_1, \ldots, ℓ_n through the origin. (b) Prove that X is compact.

- **6.** Prove that X is Hausdorff iff $\{(x, x) \mid x \in X\}$ is closed in $X \times X$ equipped with the product topology.
- 7. (a) Show that $f(x) = \frac{x}{1-|x|}$ defines a homeomorphism of the open interval (-1,1)onto \mathbb{R} . (Here \mathbb{R} denotes the set of real numbers in the usual topology.)

(b) Give an example of a homeomorphism of (2,7) onto \mathbb{R} .